

Prepared for:

AlliedSignal Inc. 101 Columbia Road

Morristown, New Jersey 07960

REMOVAL SITE INVESTIGATION REPORT REVISON 1

REMOVAL SITE INVESTIGATION QUANTA RESOURCES SITE EDGEWATER, NEW JERSEY

Prepared by:

1100 Lake Hearn Drive, NE, Suite 200 Atlanta, Georgia 30342

Project Number: GL0520-105

June 2000

TABLE OF CONTENTS

RESPONSE TO RSI REPORT COMMENTS

1.	I	NTR	ODUCTION	. 1
	1.1	Ten	ns of Reference	. 1
	1.2	Purj	oose	. 1
	1.3	Sco	pe of Investigation	. 1
	1.4	Řep	ort Organization	. 2
2.	S	ITE	CONDITIONS	. 4
	2.1	Loc	ation and Surroundings	. 4
			Geologic Setting	
			Industrial Activities	
	2	.3.1	Quanta Property	. 5
	2	.3.2	Other Properties	. 6
	2.4	Çur	rent Site Features	. 6
	2.5	Site	Hydrogeologic Setting	. 7
3.	P	REV	TOUS INVESTIGATIONS	. 8
4.	S	ITE	INVESTIGATION METHODS AND LOCATIONS	. 9
	4.1	Sur	veying	. 9
	4	.1.1	Property Boundary Survey	. 9
	4	.1.2	Global Positioning System Survey	
	4	.1.3	Geophysical Survey	
	4.2	Unc	lerground Conduit Investigation	

TABLE OF CONTENTS (Continued)

	4.3 Soil	Investigation	11
	4.3.1	Overview	11
	4.3.2	Test Trenching	11
	4.3.3	Soil Borings	12
	4.3.4	CPT/ROST TM	12
	4.4 Sed	iment Investigation	
	4.4.1	Overview	13
	4.4.2	Sediment Sampling	14
	4.4.3	CPT/ROST TM	14
	4.5 Gro	oundwater Investigation	., 15
	4.5.1	Well Installation	15
	4.5.2	Groundwater Sampling	
	4.5.3	Tidal Influence Monitoring	
5.	. EXT	ENT OF COAL TAR PRODUCT	17
6	. EXT	ENT OF CONSTITUENTS OF INTEREST	19
	6.1 Ove	erview	19
	6.2 Eva	duation of COIs	19
	6.3 Ext	ent of COIs in Soil	19
	6.3.1	Extent of VOCs in Soil	20
	6.3.2	Extent of PAHs in Soil	20
	6.3.3	Extent of PCBs in Soil	22
	6.3.4	Extent of Metals in Soil	23
	6.4 Ext	ent of COIs in Sediment	24
	6.4.1	Extent of VOCs in Sediment	25

		· TABLE OF CONTENTS (Continued)	
	6.4.2	Extent of PAHs in Sediment	25
	6.4.3	Extent of PCBs in Sediment	26
	6.4.4	Extent of Metals in Sediment	26
ć	5.5 Ext	ent of COIs in Groundwater	
	6.5.1	Extent of VOCs in Groundwater	28
	6.5.2	Extent of SVOCs in Groundwater	29
	6.5.3	Extent of PCBs in Groundwater	30
	6.5.4	Extent of Metals in Groundwater	30
7.	CON	CLUSIONS	33
8.	REF	ERENCES	37
ΑÞ	PENDL	X A: PROPERTY BOUNDARY SURVEY	
ΑP	PENDE	X B: GEOPHYSICAL SURVEY	
AP	PENDI	X C: TEST TRENCH LOGS	•
		X D: BORING LOGS	
		X E: CPT AND ROST TM LOGS	
		X F: TIDAL FLUCTUATION GRAPHS	•
AP	PENDI	X G ANALYTICAL DATA COMPUTER DISK	
TA	BLES		
FIG	GURES	·	

LIST OF TABLES

Soil Analytical Results

Table 6-1

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8 Figure 6-9

Figure 6-10

Table 6-2	Sediment Analytical Results
Table 6-3	Surface Sediment Sample Basic Physical and Chemical Results
Table 6-4	Groundwater Analytical Results
	LIST OF FIGURES
Figure 2.1	Site Location
Figure 2-1	
Figure 2-2	Generalized Regional Geologic Cross-Section
Figure 2-3	Aerial Photos (1940; 1980) of Past Industrial Operations
Figure 2-4	Aerial Photos (1980; 1989) of Past Industrial Operations e
Figure 2-5	Current Site Features
Figure 4-1	Geophysical Survey
Figure 4-2	Field Investigation Locations
Figure 4-3	Cross-Section Locations
Figure 4-4	Cross-Section A-A'
Figure 4-5	Cross-Section B-B'
Figure 4-6	Cross-Section C-C'
Figure 4-7	Cross-Section D-D'
Figure 4-8	ROST™ Results
Figure 5-1	Interpreted Plan View Projected Extended of Heavy-End Product
Figure 6-1	Soil Sampling Locations
Figure 6-2	VOC Concentrations in Soil and Sediment
Figure 6-3	PAH Concentrations in Soil and Sediment
Figure 6-4	PCB Concentrations in Soil and Sediment

Arsenic Concentrations in Soil and Sediment

Lead Concentrations in Soil and Sediment

Arsenic Concentrations in Groundwater

Sediment Sampling Locations

Groundwater Sampling Locations

Chromium Concentrations in Soil and Sediment

Figure 6-11	VOC and BTEX Concentrations in Groundwater
Figure 6-12	SVOC and PAH Concentrations in Groundwater
Figure 6-13	PCB Concentrations in Groundwater
Figure 6-14	Arsenic Eh-pH Diagram
Figure 6-15	pH in Groundwater
Figure 6-16	Redox Potential in Groundwater
Figure 6-17	Arsenic Eh-pH Diagram, Downgradient Wells
Figure 6-18	Arsenic Eh-pH Diagram in the Presence of Sulfur Species
Figure 6-19	Chromium Concentrations in Groundwater
Figure 6-20	Chromium Eh-pH Diagram
Figure 6-21	Lead Concentrations in Groundwater
Figure 6-22	Lead Eh-pH Diagram

RSI REPORT RESPONSE TO COMMENTS

Regarding Review by Members of USEPA, NOAA, and the New Jersey Department of Environmental Protection (NJDEP) of the Removal Site Investigation (RSI) Report, dated October 1999 and the Engineering Evaluation/Cost (EE/CA)

Report Analysis dated November 1999

Quanta Resources Site, Edgewater, New Jersey

Comment letter from USEPA dated 16 February 2000

1. The report suffers from poor data presentation and does not provide comparison to known data values as previously discussed with the author. Reference data collection or evaluation of existing data from other area studies was requested. Reference sample locations would have to be clearly identified in the report. The main figures of the report contain only ranges of concentrations, making interpretation difficult. The lateral extent and mobility of contaminants also appears to be underestimated and downplayed-especially to the south and west. The vertical extent of contamination does not appear to have been adequately determined. This is true for soils, sediments and groundwater. Without adequate delineation it will be difficult to properly address this problem.

RESPONSE: Information was recently provided by the USEPA regarding a regional Harbor Study of the lower Hudson River [D. Adams et al., 1998]. A few of the sample locations are in the vicinity of the Site, while the majority of others are located significant distances downstream in the Upper Harbor. The Harbor Study shows sediment in the Hudson River is contaminated with PAHs (and other constituents) beginning with sample locations at the north end of Manhattan island south to the Upper Harbor (Figure 4-8 in Adams et al., 1998). Concentrations of PAHs in sediment generally range between the Effects Range-Low (ERL) and Effects Range-Medium (ERM) biological screening guidelines (i.e., between 4022 and 44,792 ppb).

The new figures in the report express constituent concentrations as class interval ranges (typically five classes), color coded and in some cases size proportional to allow the reader to readily visualize areas of most elevated constituent concentrations. Specific sample concentrations are available on the electronic database file (enclosed diskette).

Figures 6-2 to 6-7 have been edited to also post actual concentration values adjacent to the sample location symbol.

Regarding the interpreted extent of contamination, edits and clarifications have been made to the revised RSI Report as supported by the available site characterization data. Response Action Objectives (RAOs) typically provide a general basis for interpretation of the extent of contamination. RAOs, presented in the Site Operations Plan prepared by GeoSyntec at the beginning of the project (approved by the USEPA), focus on delineation of coal-tar product (sheen producing) and grossly contaminated soil/groundwater. RAOs have been met with the site characterization completed for the RSI, including assessment of the vertical extent of contamination in groundwater (see response to comment #13).

2. The depiction of the extent of product in Figure 5-1 is not conservative. The following locations also had indications that free product was present: CPT-R2, CPT-R5, CPT-R6, and MW-107. In the case of the CPT points, these appear to have been omitted from the figures as a result of the lack of differentiation between heavy and light product. This is not appropriate. Drill logs for MW-106, MW-108, and MW-109 also had indications of stained soils, and high levels of PAHs in groundwater from MW-106 and MW-109 suggest the presence of a NAPL.

Additionally, the treatment of product at CPT-10B and MW-101 as an isolated pocket is not logical. This is more likely continuous with the remainder of the contamination, extending under the "new" River Road. It should be noted that due to the contamination found under the road a membrane was installed along with fill/capping during the road installation project.

RESPONSE: Interpretation of the CPT/ROST response must consider both the percent fluorescence and waveform response. This interpretation is to a large extent qualitative and based on experience and judgement. The waveform response gives insight into the type of hydrocarbon type (light end, heavy end) while the percent fluorescence indicates a relative abundance ("concentration") of product. Heavy-end hydrocarbons exhibit a lesser intensity fluorescence than light-end hydrocarbons, for a given hydrocarbon content. Responses at CPT-R2, R-5, and R-6 exhibit low intensity

fluorescence response and have been interpreted as not containing free product. Figure 5-1 is intended to show the conservative estimated limits of free/mobile product, and therefore locations such as MW-106 which exhibit only stained soils but no direct evidence of mobile product, have not been included in the product extent delineation.

Figure 5-1 has been adjusted to show continuation of the product delineation across "new" River Road.

3. The cross sections indicate that the surficial sediments in the river are free of product, based on the lack of ROST response. This is misleading. At low tide, contaminant seeps are visible. It may be that the individual seeps are acting in a diapiric fashion which concentrated the contamination into the individual seeps. The sediments are contaminated, just not in a uniform fashion. This is important in that the current depiction implies that there is no direct discharge to the river, and there is clearly a discharge.

RESPONSE: Product discharge emanating from upland source are visibly evident during low tide, as rivulets flowing over the surface of the mud flats. ROST response logs from upland areas confirmed by the test pits and other intrusive means, interpreted to contain hydrocarbon product differ substantially from ROST responses in the river setting, especially in terms of fluorescence intensity with river locations exhibiting a substantially lesser intensity response. Furthermore, vibracore continuous sediment sampling cores obtained at multiple locations from the river mudflats near the bulkhead, showed that coal tar product occurs as thin lenses within sediment without any indications of flowable product pools. The contribution of these product lenses to the sheen generation, if any, cannot be discerned given the magnitude of the upland source contribution.

4. Section 6.2 does not include VOCs in the list of COIs for soils or sediments. The high levels of VOCs in groundwater imply that other media are also impacted. It is further unclear why PAHs are given as COI's for soils and sediment, while SVOCs are listed for groundwater. Please be consistent here.

RESPONSE: Constituents of Intent (COIs) were derived during the project scoping phase from the ample site characterization records available from previous local area investigations. Theses COIs were approved by the USEPA in the Site Operations Plan and implemented for the RSI.

5. In the sentence bridging pages 20 and 21, a reference to soils that were "smeared with the product but did not contain visible separate phase." What is intended here? If the product is visible, it is present as a separate phase, correct? Please clarify. Note that the contradiction is also present on page 22, in reference to MW-106.

RESPONSE: This descriptive category is intended for soils containing coal tar staining and odor, but lack sufficient product volume within the soil matrix to be considered as a location of free product. "Jar" tests were conducted routinely during the soil boring and test pit work to investigate whether stained soils were capable of producing a sheen to water. Those stained soils incapable of producing a sheen were so categorized and not included in the product delineation shown on Figure 5-1.

6. The data presentation on figures 6-2 through 6-7 is of limited usefulness. The broad ranges of contaminants depicted by each colored bar do not allow for detailed analysis of contaminated distributions. Furthermore, the selection of concentrations which define the contaminant ranges seem arbitrary. Presenting the actual concentrations would result in a much more usable set of figures. Granted this can get busy in areas of dense sampling, but insets could be used in such cases.

RESPONSE: Figures 6-2 through 6-7 have been modified to incorporate risk-screening thresholds (ERLs and ERMs), where appropriate to the selected concentration class interval breaks. Actual sample concentrations are now posted on the figures.

7. Tables and figures include only total VOC and SVOC data. Individual contaminant concentrations need to be presented as different compounds have different toxicities.

RESPONSE: Individual constituent concentrations are now provided in the revised RSI tables.

8. On page 21 it is contended that high levels of PAHs on the Celotex property have been excavated since stained soils are not present in 1996 aerial photo. This statement needs to be supported by documentation. Without a documents excavation, post-excavation sampling results, and proof of appropriate disposal, it must be assumed that the contamination is still present. Contact with NJDEP Case Manager Bob Hayton (609-633-0744) should clarify this issue.

REPONSE: The RSI text has been modified.

9. Based on Figure 6-4, only surface samples have been analyzed for PCBs on the Quanta property. This does not adequately address the possibility of PCB contamination, which may be present in the subsurface. Later in the report, the argument is made that PCBs in sediments are related to an offsite source. Due to lack of on-site data, this is an unfounded conclusion. Similarly, the absence of PCBs in the four groundwater samples collected is not adequate to determine that this contaminant is absent from the groundwater.

RESPONSE: Thirteen locations on the Quanta property were tested for the presence of PCBs. Of these, six were non-detect, six others were less than 5 mg/Kg, and one sample was 74 mg/Kg. All 13 locations were tested for surface soils (or very near the surface) which would have the greatest likelihood for PCB contamination. Statistically, it is appropriate to conclude from these data that PCB contamination is not an issue for the Quanta property. Similar results were obtained at multiple sample locations on other properties, primarily to the north. With respect to the off-site source argument regarding PCBs in the river sediment, this is based on several factors including:

 essentially all upland sample locations near or bordering the river are nondetect;

- PCB levels in the river sediment, locations spanning a distance of nearly 2000 ft of shoreline and 600 ft from the shore, are remarkably similar in concentration; and
- PCBs are very common contaminants in nearly every industrialized river in in Adams et al., North America (see Figure 4-7 in Adams et al., 1998 for the lower Hudson River).
- 10. Arsenic in river sediment is discussed on page 26. The distribution of arsenic in groundwater indicates discharge of the contaminant to the Hudson near the areas that show high concentrations in sediment. It seems possible that the arsenic is precipitating out of the groundwater due to changes in water chemistry as it enters the river. Also, in the conclusions section of the report, it is argued that the extent of sediment contamination is delineated. This is clearly not the case, especially in the case of arsenic near the pier.

RESPONSE: While arsenic was detected in groundwater samples from MW-29 and MW-12, it is highly unlikely that the low concentrations detected in these samples (0.14 and 0.27 ppm, respectively) can account for the concentrations detected in sediment samples in this area of the site. The upland soils data provide the strongest line of evidence to support this, since significantly lower concentrations of arsenic were detected in upland soils compared to sediment. Presumably, the upland soils would have to contain the source for the arsenic detected in groundwater. There is no evidence of a significant source in this area, since low concentrations were detected in both soils and groundwater. This theory is inherently inconsistent because it says that lower upgradient concentrations are responsible for higher downgradient concentrations in a surface water body, which would be impacted by transport and mixing in the river after the "discharge" of arscenic had occurred.

The statement that "It seems possible that the arsenic is precipitating out of the groundwater due to changes in water chemistry as it enters the river" is not consistent with the changes in geochemistry that would be expected to occur upon mixing with a surface water body. Firstly, the "changes in water chemistry" that would be amenable to arsenic precipitation, such as increasingly lower redox (i.e., reducing) conditions and/or increased sulfide concentrations, are not consistent with trends that are observed when groundwater comes into contact with surface water at pseudo-equilibrium with

atmospheric oxygen. For example, groundwater from MW-29 was reported to have a pH of 6.70 and Eh of -138 mV and 0.14 mg/L arsenic. These conditions are borderline for precipitation of arsenic sulfide solids and a decrease in pH, increasingly reduced conditions, and/or increased sulfide concentrations would be necessary to precipitate such solids. These changes in geochemistry are not likely to occur upon mixing with a surface water body because mixing with water that is in a state of pseudo-equilibrium with atmospheric oxygen would promote a more oxidizing environment. Rather, under the conditions expected upon mixing with a surface water body, other (dissolved) forms of arsenic (such as arsenates) would be more likely to form (and sulfates versus sulfides as well).

Discussions of arsenic fate and transport have been added to Sections 6.4.4 and 6.5.4 in order to address the reviewer's comments.

11. Page 27 indicates that groundwater samples were analyzed for PCBs and other metals besides those discussed. The four PCB samples are discussed elsewhere. The metals results are not given in the report and need to be presented.

REPONSE: Metals results for arsenic, chromium and lead were described in Section 6.5.4. All metals data are provided in Table 6-4 (revised).

12. On page 29, arsenic in groundwater is discussed. The report contends that arsenic is not mobile at the site, which is contradicted by the high levels present in groundwater. It is also stated that groundwater is "oxidized or only slightly reduced". Please include data that supports this statement. In addition, it is not appropriate to claim knowledge of what arsenic species are present without data to back it up. Please provide documentation to support statement. Lastly, it is very misleading to assert that arsenic levels decrease towards the river. Contouring the data shows discharge of arsenic to the river in the vicinity of the Celotex pier and along the Quanta property boundary.

RESPONSE: Response: The high levels that were detected in groundwater are consistent with the statement that arsenic is not very mobile in groundwater at the site. The higher arsenic concentrations are localized in the vicinity of wells containing higher concentrations of arsenic (e.g., MW-107, MW-21). If arsenic were highly mobile in groundwater at the site, one would expect to observe similarly high arsenic concentrations in downgradient wells at the site (e.g., MW-106, MW-7). This is clearly not the case, and the reason that this is not the case is that arsenic is not very mobile in groundwater at the site.

A fate and transport evaluation has been added to Section 6.5.4 in order to better explain these observations.

13. Groundwater beneath the organic layer has still not been characterized. Several borings were drilled to these depths, but hey were not completed as wells. The only well from below the layer is MW-31 which has shown high levels of arsenic, as well as the presence of other contaminants. Groundwater at this depth regime requires further investigation.

RESPONSE: All borings and monitoring well installations were completed in accordance with the USEPA approved SOP. Two wells are screened in the lower portion of the aquifer, MW-30 and MW+31 both located on the property north of the Quanta Resources. Organic and inorganic constituents have been detected in the deeper monitoring wells, but the reviewer should consider the vertical concentration gradient when considering the adequacy of the contamination delineation (especially with

respect to the RAOs). For example, constituent concentrations at MW-31 are about one order of magnitude less than the corresponding shallow well in this area.

14. Samples were to be collected at low tide during the same tidal cycle. If tidal information was recorded for the sampling event, it should be presented in the revised document.

RESPONSE: GeoSyntec is not aware of any requirements nor commitment to collect the sampling (assumed to be river sediments) in a single low-tide cycle event. Given the required number of stations requiring sampling, the logistics of such a sampling protocol would be tremendous. Furthermore, the scientific basis for this protocol has not been expressed. The river mudflats setting required samples to be collected during periods other than low tide, since water was needed to float the boat used for the sampling.

15. All sediment results are to be compared with the effective range low ER-L and effective range median ER-M values (Long, et al., 1995), to screen for the potential for adverse ecological effects. This comparison was not presented, and must be included in the revised report; exceedences of the screening criteria must be emboldened. If would facilitate review if the color-coded concentration ranges used in Figures 6-2 and 6-7 could be linked to sediment criteria.

RESPONSE: The RSI tables and figures have been modified to incorporate the ER-L and ER-M criteria.

16. Two samples were run for full scan TCL.TAL analysis; from examination of Table 6-2, it is assumed these were SED1.5C and SED 3.5C. Complete data sets were not presented, and must be included in the revised report.

RESPONSE: Complete data sets are provided in the revised RSI tables.

17. Text on page 33 discusses flow of product to the river through "undiscovered conduits". Since the identification of the migration pathways was a major goal of this investigation, it appears this goal may not have been completely

realized; uncertainty with regard to the identification of conduits from source areas to the Hudson River must be fully described in the revised report.

RESPONSE: Extensive test pit excavations were completed, under oversight of the USEPA, to locate and trace subsurface pipelines which could serve as conduits for transfer of coal tar products to the river. Pipeline discovered during the investigation were found to be discontinuous, none leading to the river. The statement "undiscovered conduits" was used because isolated seeps carrying hydrocarbon sheen are observed at low tide along the bulkhead; conduits in this sense refer to the likely preferential pathways in the upland fill soils leading to the bulkhead. The RSI has been revised to clarify this assessment.

18. Data supplied on computer disk cannot be downloaded for review in current format. Please provide two copies of data in printed format as well as solving the download problem.

REPONSE: Data was provided on the diskette in text (___.txt) format which can be uploaded into most spreadsheet and database software. USEPA should specify the desired format and a replacement diskette will be forwarded.

1. INTRODUCTION

1.1 Terms of Reference

GeoSyntec Consultants (GeoSyntec) has completed the Removal Site Investigation (RSI) for the Quanta Resources Site (Quanta Site) in Edgewater, New Jersey. The RSI was performed pursuant to a U.S. Environmental Protection Agency (USEPA) Administrative Order on Consent (AOC) index number II-CERCLA-98-0112, dated 30 September 1998. This revision to the RSI Report was made on the basis of USEPA comments dated 16 February 2000. Also pursuant to the AOC, GeoSyntec has prepared an Engineering Evaluation/Cost Analysis (EE/CA) Report that conveys an evaluation of remediation alternatives developed on the basis of this RSI Report.

1.2 Purpose

GeoSyntec performed the RSI in order to: (i) identify possible conduits for the transport of coal tar product from source areas to the Hudson River; (ii) delineate source areas which continue to impact on soil, river sediment, and groundwater; (iii) characterize the nature and extent of soil, river sediment, and groundwater contamination; and (iv) provide data on the geotechnical properties of the site soils in support of evaluation of engineered site remedies.

1.3 Scope of Investigation

A Site Operation Plan (SOP), which consists of a Work Plan, Sampling and Analysis Plan, Quality Assurance Plan, and Health and Safety Plan was prepared by GeoSyntec and approved by the USEPA in October 1998.

The site investigation which consisted of the following activities, was performed to address the aforementioned purpose:

 underground conduit investigation including a geophysical survey and test trenching;

- source area evaluation and nature and extent of soil contamination investigation utilizing soil borings, cone penetrometer testing (CPT), and test trenching;
- Hudson River sediment nature and extent of contamination investigation including sediment coring and CPT;
- groundwater nature and extent of contamination investigation including monitoring well installation and groundwater sampling; and
- geotechnical engineering evaluation including soil borings and CPT.

The Phase I Field Investigation was conducted in November and December 1998. A Phase I data package was distributed and a data review meeting was held with project stakeholders in February 1999. On 10 March 1999, based on USEPA request for additional characterization, GeoSyntec issued a work plan addendum to conduct additional characterization (Phase II Field Investigation). The USEPA issued written comments to the Phase II work plan on 12 April 1999. On 30 April 1999, GeoSyntec responded to USEPA comments and submitted work plan Addendum 1 to conduct the Phase II Site Investigation. USEPA approved the work plan addendum and the Phase II Field Investigation was conducted in June and July 1999.

1.4 Report Organization

The remainder of this report is organized as described below:

- Section 2 discusses site conditions;
- Section 3 describes local area investigations performed by other investigators;
- Section 4 discusses GeoSyntec's site investigation activities;
- Section 5 describes the extent of coal tar product;
- Section 6 describes the extent of constituents of interest (COIs) in soil, sediment, and groundwater;

- Section 7 presents the conclusions made from the investigation; and
- Section 8 contains references.

brown to black, fine to medium grained sand containing some silt, cinders, brick, wood, gypsum and concrete debris overlying non-continuous layers of marsh clay, silt, or sand. The clay and silt layers together form a continuos confining unit. The clay consists of gray to black semi-plastic soil with areas containing traces of silt, roots, and shell fragments [Parsons, 1998; Enviro-Sciences, 1997; and GeoSyntec, current]. The silt is gray, brown to reddish brown and often clayey. Sand is brown to gray, medium grained The bedrock at the site appears to be the Upper Triassic-age and sometimes silty. Stockton Formation, which consists of sandstone conglomerate and siltstone. Immediately west of the site are the Palisades, which consist of intrusive bodies such as diabase dikes and sills. The ground elevation increases from approximately 10 to 18 ft above mean sea level (msl) at the site to over 200 ft on the Palisades. To the east of the site lies the tidaly influenced Hudson River. A bulkhead separates the upland area from River sediments consist of silt to clayey silt approximately 45ft thick immediately off shore from the bulkhead, which thicken eastward toward the main river channel. These mud flates are exposed at low tide in and inundated during high tide. During previous industrial activities, the river sediments adjacent to the bulkhead were Sediments have redeposited since dredged to allow barge access to the site. maintenance dredging ceased, elevating the mud flates to their current elevation (Figure 2-2).

2.3 Past Industrial Activities

2.3.1 Quanta Property

A coal tar roofing plant was located at the current Quanta Property and southern portion of the Celotex property from prior to 1930 until 1974 [USEPA, 1998a]. Typically roofing plants of this type used three main products: creosote, coal tar pitches and refined tars used for roads. Between 1974 and 1981 the Quanta property was used for reprocessing of waste oil. The New Jersey Department of Environmental Protection (NJDEP) stopped waste oil reprocessing activities after elevated concentrations of polychlorinated biphenyls (PCBs) were detected in some waste oil. After 1981, the Quanta property was not usually occupied. The Quanta property contained 61 aboveground storage tanks and 10 or more underground storage tanks as well as numerous underground pipes. The total capacity of the tanks was over nine million gallons

[USEPA, 1998a]. Tanks and product have been removed from the site under a previous USEPA Removal Action order between 1984 and 1988.

2.3.2 Other Properties

Over different periods of time the Celotex property contained a chemical plant which produced acids, alums and sodium compounds, and later a Gyspsum company and a vacuum truck company. After 1974 a metal reclaiming/refinishing plant was operated at the south side of the Celotex property. The Lustrelon property, located north of the Celotex property housed a lacquer spray paint and parts cleaning operation and raw materials warehouse. Historical aerial photographs and Sanborn fire-insurance maps of the study areawere reviewed using a geographic information system (GIS). The Sanborn maps provide approximate locations of former site features including underground piping. Figure 2-3 shows a 1940 aerial photograph (roofing plant activities at the Quanta Property) and a 1980 aerial photograph (waste oil reprocessing activities at the Quanta Property).

Observation of the 1980 aerial photograph in Figure 2-3 shows dark staining of the ground at the location of the vacuum truck company. A linear dark stained feature is visable from the metals reclaiming/refinishing plant to the edge of the Hudson River, and also dark staining or colored discharge in the Hudson River is observed near the end of this linear feature. These areas are unrelated to coal tar and waste oil recycling operations at the Quanta Property and may have contributed similar chemical constituents to the environment. Observation of 1986 and 1989 aerial photographs show that between these years an additional approximately 8 ft of fill was placed on the Celotex property (Figure 2-4).

2.4 Current Site Features

Currently the Quanta property is vacant and the remaining above-ground features consist of a sheet metal building located adjacent to the east side ofNnew River Road and office trailers located east of the sheet metal building (Figure 2-5). The Quanta property contains numerous exposed concrete tank and building foundations, the

remains of an oil/water separator, a wood bulkhead at the rivers edge and remains of wooden docks. New River Road cuts across the western side of the Quanta property. Remnant coal tar pitch is present on the ground surface at various areas of the Quanta property. Pockets of oily sheen occur sporadically in the mud flats of the Hudson River adjacent to the Quanta property and southern Celotex properties. An absorbent boom is maintained to control the sheen. The Celotex Property is directly north of the Quanta Property and is separated by a chain-link fence. North of the Celotex Property is the The Celotex and Lustrelon Properties are undergoing Lustrelon Property. redevelopment, where an additional several feet of fill has been imported and graded bringing this property 6 to 8 ft above the grade of the Quanta Property. Commercial and residential structures are being erected on the Lustrelon Property and northern portion of the Celotex Property. The southern portion of the Celotex Property remains at rough The Spencer Kellogg Property, located immediately south of the Ouanta grade. Property, has been redeveloped and presently includes the Bridge View Bank, various offices, a newly reconstructed dock containing parking and offices, and a daycare center for the property tenants. South of the Spencer Kellogg Property is the Lever Brothers Property, which is occupied by Unilever Research.

2.5 <u>Site Hydrogeologic Setting</u>

Groundwater beneath the site occurs within the unconsolidated fill/soil and bedrock. The water table varies in depth from approximately 10 to 20 ft at the Lustrelon and Celotex properties to approximately 3 to 7 ft on the Quanta property. Groundwater flow is from west to east discharging to the Hudson River. Groundwater recharge is a result of precipitation at the site that infiltrates to the water table and infiltration in upgradient areas such as the base of the Palisade Escarpement. The unconsolidated lithology is composed of non-native fill and native sand, silt and clay. The shallow fill and sand layers are characterized by high permeability (typical of sand) and represent the major groundwater flow zones. The silt and clay underlying the shallow fill and sand appears to be a low permeability zone as indicated by clay sampled from MW-108 at 15 to 17 ft bgs with a measured hydraulic conductivity of 3.9 x 10⁻⁸ cm/s. The Hudson River is tidaly influenced with the river water level fluctuating more than 6 ft during a tidal circle. This river water level variation influences the shallow water table immediately adjacent to the river. Tidal influence is further discussed in Section 4.5.3.

3. PREVIOUS INVESTIGATIONS

Previous investigations were performed on the Quanta Property by Parsons Engineering Science, Inc. (Parsons) in 1997 and by Roy F. Weston, Inc. (Weston) during 1992, 1995 and 1998. Also, remedial investigations were performed by Enviro-Sciences, Inc. (Enviro-Sciences) at the Celotex and Lustrelon Properties during 1997. These data have been provided to GeoSyntec but have not been validated or otherwise evaluated for quality. The analytical results from soil and sediment samples collected during these investigations are compiled along with the data collected under this RSI into an assessment of nature and extent of constituents of interest (COIs) in this report. A limited amount of groundwater data from previous investigations was provided to GeoSyntec, but since most of the monitoring wells previously sampled were also sampled during the RSI, the previous groundwater data is not included in this report.

Currently the Celotex and Lustrelon properties are being managed under NJDEP jurisdiction. Some clean-up operations are in progress at these properties, but these operations are being managed by others. The data provided to GeoSyntec for the Celotex and Lustrelon Properties is discussed in this report but it may not represent the current conditions at these areas due to remediation actions directed at hot spot areas on these properties.

4. SITE INVESTIGATION METHODS AND LOCATIONS

4.1 Surveying

4.1.1 Property Boundary Survey

A property boundary survey was conducted for the Quanta property by GEOD Corporation, a New Jersey licensed professional surveyor, during August and September 1999. The boundary survey drawing and legal description are included as Appendix A.

4.1.2 Global Positioning System Survey

Sampling locations and site monitoring wells were located using a survey grade, two receiver, global positioning system (GPS). The GPS was calibrated to New Jersey State Plane System, 1983 datum using local U.S. Geological Survey (USGS) bench marks. The GPS calculates location by the use of two receivers (one receiver is base station and one receiver rover) using radio signal from satellites, communicating between receivers using two-way radio, and compensating for differential errors received from the satellites. Using this configuration, the GPS is capable of horizontal accuracy of one centimeter and vertical accuracy of two centimeters.

4.1.3 Geophysical Survey

A surface geophysical survey was conducted in November 1998 to help locate underground pipes that may serve as conduits for transport of coal tar product to the Hudson River. The surface geophysical survey included two electromagnetic (EM) instruments, the Geonics EM-31 and EM-61. Additional details about these methods as well as the row data are provided in Appendix B.

Prior to the geophysical survey, a reference grid of pin flags was established using fiberglass tape measures and a right angle prism. The state plane coordinates of the reference grid was later estimated using the GPS. The reference grid lines were oriented

approximately N25°E, perpendicular to the expected pipe orientation. These lines were spaced about 40 ft apart with pin flags placed every 50 ft along these lines. Many grid lines required clearing of vegetation. The location of the geophysical survey reference grid is shown on Figure 4-1.

An EM survey was conducted using a Geonics EM-31 terrain conductivity meter. The EM-31 has a nominal depth of penetration of approximately 15 ft. The EM-31 survey traverses were primarily conducted along the established N25°E trending lines. Several addition traverses were made perpendicular the main lines. For each traverse, EM-31 data were recorded at approximately 5-ft intervals. EM-31 data and station locations were stored in a digital data logger and downloaded to a computer for processing. A total of approximately 10,000 linear feet of EM-31 traverses were run.

Following the EM-31 survey, an EM-61 survey was conducted using the established reference grid. The EM-61 is a time-domain high-resolution metal detector which has a depth of penetration of approximately 6 ft. The EM-61 survey traverses were primarily conducted along the established N25°E trending lines. Several addition traverses were made perpendicular the main lines. For each traverse, EM-61 data were recorded at approximately 1-ft intervals. EM-61 data and station locations were stored in a digital data logger and downloaded to a computer for processing. A total of approximately 6,400 linear feet of EM-61 traverses were run.

The geophysical data were analyzed in the field to help select test trench locations. The data analysis revealed numerous geophysical anomalies indicative of buried metallic objects. Anomalies that exhibited linear trends were interpreted as possible buried pipe locations. These possible pipe locations were marked in the field for further investigation by trenching. Most of the geophysical anomalies did not produce linear patterns and are interpreted to be buried metallic objects such as reinforced concrete.

4.2 Underground Conduit Investigation

The first phase of the conduit investigation was to conduct the geophysical survey as discussed in the previous section of this report. The second phase was to excavate test trenches at areas marked from the geophysical survey as well as various other areas suspected to contain buried pipes (conduits) as shown in Figure 4-2. Numerous small diameter conduits were located around the Quanta and southern Celotex properties, many of which seem to extend for only a few feet before terminating. One pipe, which appears to be the drain from the oil/water separator, is approximately 18-inches in diameter and was tracked for approximately 190 ft in the direction of the Hudson River (terminating approximately 325 ft west of the bulkhead). Numerous test pits were excavated along the suspected alignment toward the river in attempts to track the piping to the likely discharge point at the bulkhead. A report from a previous investigation (Weston, 1995) indicates a conduit aligned with the oil/water separator drain pipe extending to the river (shown as dashed line on Figure 2-5). This section of the pipe may have been removed during the last Removal Action.

4.3 Soil Investigation

4.3.1 Overview

The soil investigation was conducted using test trenching, soil boring and cone penetrometer testing (CPT) with Rapid Optical Screening ToolTM (ROSTTM). The locations of the soil investigation are presented in Figure 4-2. Data from previous investigations was used to supplement the database for comprehensive local-area assessment.

4.3.2 Test Trenching

Test trenching was conducted using a Case 888 track hoe and located using GPS. A total of 17 test trenches were excavated. Trenches were logged during excavation. Test trench logs are presented as Appendix C and locations are shown on Figure 4-2. Trenches were excavated between approximately 1 and 18 ft deep. Material encountered in the trenches included sandy fill, concrete foundations walls and slabs, coal tar (ranging in consistency from very hard pitch to sticky roofing pitch to viscous oil -like material), pipes, and debris (wood, brick, concrete and metal). Soil samples for chemical analysis were collected from sidewalls and bottom of test trenches.

4.3.3 Soil Borings

Soil borings were drilled under GeoSyntec's direction using hollow stem auger and mud rotary methods. A total of 14 borings were drilled with ten converted to monitoring wells (Figure 4-2). Borings were logged by a qualified geologist (boring logs are presented as Appendix D.) Borings were generally continuously sampled using split spoon samplers. Samples for chemical analysis were collected from the split spoon. Two borings (B-3 and B-4) were advanced into bedrock to assess the thickness of fill and native soil and approximately 5 ft of rock was cored.

Soil boring logs were used to develop stratagraphic cross-sections of the site. Cross section locations are shown on Figure 4-3 and cross-sections are shown on Figures 4-4 to 4-7.

4.3.4 CPT/ROSTTM

A CPT equipped with ROSTTM was used to obtain information on subsurface lithology, the geotechnical properties of the subsurface materials, and a semi-quantitative testing of petroleum hydrocarbon product (calibrated for coal tar product) in soil. The CPT/ROSTTM investigation was conducted by FUGRO Geosciences, Inc. under subcontract to GeoSyntec, using a cone with a base area of 15 square centimeters, an apex angle of 60 degrees, and a 200 cm² friction sleeve. Due to the small size of the device, there is minimal disturbance of the subsurface and no investigative-derived wastes.

The CPT uses a combination of sleeve friction and tip resistance to identify subsurface soil properties and types. The sleeve friction, tip resistance, and the ratio between these two values is correlated with soil type and strength properties using empirical equations or charts. One such chart, Campanella and Robertson's Simplified Soil Behavior Chart, was used to estimate the soil type with depth at this site based on the CPT results.

The ROSTTM operates by emitting laser light at a wavelength of 290 nanometers (nm) into the ground through a sapphire window approximately 30 in. above the bottom of the cone tip and monitoring the fluorescence response of the material against the

window. The ROSTTM is calibrated to a petroleum hydrocarbon standard prior to each use and the total fluorescence is measured in percent compared to the standard. The emitted florescence is measured simultaneously at four wavelengths (340, 390, 440 and 490 nm). The four wavelengths monitored cover the range of light fuels to heavy products such as coal tar. Based on the fluorescence distribution between the four wavelengths, different types of petroleum products can be distinguished. Lighter-end petroleum products such as gasoline have a high percent total fluorescence, a high 340 nm response and a very low 490 nm response. Heavy-end products, such as creosote and coal tar has a low percent total fluorescence, a very low 340 nm and a high 490 nm response.

The ROSTTM device has many advantages over other traditional methods for delineating product in the subsurface, such as:

- ROST™ delivers a continuous profile of the petroleum hydrocarbon response;
- ROSTTM is designed for rapid (real time) delineation of petroleum hydrocarbon product in subsurface soils; and
- data is provided in real time allowing for optimization of product delineation.

A total of 23 CPT/ROSTTM locations were completed in the upland area. The ROSTTM data was interpreted into four categories: (i) background response (no product detected); (ii) light end petroleum hydrocarbon product detected; (iii) undifferentiated hydrocarbon product detected (may be mixture of coal tar and other hydrocarbons); and (iv) heavy-end product detected such as coal tar and creosote. The interpreted ROSTTM profiles are presented in Figure 4-8 and the CPT and ROSTTM logs are presented as Appendix E.

4.4 <u>Sediment Investigation</u>

4.4.1 Overview

Hudson River sediments adjacent to the site were investigated using various methods to collect samples for chemical analysis and also using CPT/ROSTTM.

Sediment sampling locations are present on Figure 4-2. Data from previous investigations was used to supplement the database for comprehensive local-area assessment.

4.4.2 Sediment Sampling

Surface samples were collected by GeoSyntec using a ponar dredge to collect sediment from the top 6 in. A total of nine surface sediment samples were collected on a grid pattern extending from the Lever Brothers Property to the north end of the Celotex Property. Additional surface and shallow subsurface sediment samples were collected by GeoSyntec using a sediment core sampler and one hand auger boring. The sediment core sampler consisted of 2-in. diameter 10-ft long PVC pipe with a vacuum pump attachment. Core samples up to an approximate depth of 7 ft were collected using this method. The cores were extruded and samples for chemical analysis were collected from the extruded core. A total of 26 sediment cores were collected. One hand auger boring was advanced to an approximate depth of 12 ft adjacent to the Quanta bulkhead. The hand auger boring was advanced by augering inside a hand-driven 4-in. diameter PVC pipe.

Sediment samples to a depth of approximately 20 ft were collected using Vibracore equipment from a small barge. The Vibracore equipment consists of a 30-ft long 2-in. diameter aluminum core barrel, a concrete vibrator adapted to bolt to the outside of the core barrel, and a barge equipped with a cable hoist to extract the cores. The aluminum cores were vibrated into the sediment until refusal, extracted with the hoist and cut open lengthwise to log and collect samples for chemical analysis. A total of 10 vibracores were collected (labeled "VC" on Figure 4-2). Vibracore logs are present in Appendix D.

4.4.3 CPT/ROSTIM

A river sediment CPT/ROSTTM investigation was conducted from a barge. A total of 10 CPT/ROSTTM locations were completed in the river sediments. The interpreted ROSTTM data are presented in Figure 4-8 and the CPT and ROSTTM logs are presented as Appendix E.

4.5 Groundwater Investigation

4.5.1 Well Installation

A total of 10 monitoring wells (MW-101 to MW-110) were installed in accordance with NJDEP requirements as part of the RSI. Monitoring well locations are shown on Figure 4-2. The monitoring wells consist of 2-in. PVC with 0.010 in slot screen ranging in depth from 12 to 25 ft. The wells are generally screened from the base of the fill to approximately 2 ft above the water table. Wells were developed by pumping and surging until water clarity remained stable. Other wells, designated MW-1 to MW-34, were installed by others during previous area investigations.

4.5.2 Groundwater Sampling

Eight of the 10 wells installed by GeoSyntec and 20 existing wells were sampled. Two wells (MW-104, 105) installed by GeoSyntec contained free product at the time of the Phase I RSI sampling and therefore were not sampled for dissolved-phase COIs analysis (it should be noted that MW-102 and MW-103 sampled during the Phase I RSI (November 1998) were found subsequently in the Phase II RSI (June 1999) to contain product; thus, the Phase I sampling results for these two wells were likely influenced by the nearby presence of product). Groundwater samples were collected using low-flow purging techniques. A peristaltic pump with dedicated Teflon^R tubing was used for each well. The wells were purged until field parameters (pH, Eh, temperature and conductivity) stabilized (usually at least two hours), after which groundwater samples were collected.

4.5.3 Tidal Influence Monitoring

Tidal influence monitoring was conducted to assess the influence (if any) of the Hudson River tidal fluctuation on the upland areas of the site. Tidal influence monitoring was conducted using Insitu TrollTM dataloggers. A tide station was operated for more than eight days at the end of the Spencer Kellogg pier to record the Hudson River level while monitoring head fluctuation in select wells. The tide station recorded and maximum tidal variation of approximately 6 ft during the first day of monitoring.

TrollsTM were operated in monitoring wells MW-7, MW-20 and MW-31. MW-7 and MW-20 are screened in the fill material and MW-31 is screened below a clay (confining) unit. The dataloggers were set to record the water level and temperature every 12 minutes. MW-7 located approximately 75 ft inland from the bulkhead, showed approximately 1.5 ft of variation, but only during the peak high tides recorded at the tide station during the first four days of the monitoring. MW-20 located approximately 300 ft inland from the bulkhead was monitored during lower amplitude tides and did not indicate tidal influence. MW-31 located approximately 370 ft inland from the bulkhead showed approximately 0.5 ft of cyclic fluctuation, but it appears to be out of sequence with the tide. Although tidal influence was measured in the upland wells, it is much less pronounced then in the Hudson River and the magnitude quickly decreases further inland from the bulkhead. Tidal fluctuation graphs are presented as Appendix F.

5. EXTENT OF COAL TAR PRODUCT

The extent of heavy-end hydrocarbon product (coal tar & creosote) was evaluated using visual observation and chemical testing of soil borings, test trenches, sediment cores, Vibracores and ROSTTM data. No analytical finger printing was performed to determine the product type. Based on the historical industrial use it is assumed that the heavy-end hydrocarbon product is composed of coal tar, creosote and other hydrocarbons. The coal tar present in the upland area appears to consist of hard solid coal tar pitch (solid pitch), sticky coal tar roofing pitch (roofing pitch) and viscous oillike coal tar. The product is present to a depth of approximately 12 ft within the nonnative fill. The solid pitch was observed in test trenches on the Quanta Property and southern Celotex Property in layers as thick as approximately 5 ft. The solid pitch is black, glassy, very hard (very difficult to excavate with track hoe), non-mobile, and often in thick layers. The roofing pitch is black, sticky and usually in thin noncontinuous lenses. The roofing pitch is sometimes associated with the coal tar pitch (above or below pitch layer) and is often found within the top 2 ft of fill. Roofing pitch is also present on the ground surface in areas of the Quanta property and appears to be more abundant and mobile during the summer.

Oil-like product has collected in monitoring wells MW-102, 103, 104 and 105 on the Quanta Property. Monitoring wells MW-102, 103, and 104 were installed during the Phase I Field Investigation (November 1998) and MW-104 was the only well that initially contained product. During the Phase II Field Investigation (June 1999), MW-105 was installed and product was observed to accumulate immediately in this well. MW-102 and MW-103 also contained product during the Phase II investigation. The thickness of product measured in these monitoring wells ranged from approximately 1 inches in MW-105 to approximately 4 ft in MW-104. In June 1999, approximately 5 quarts of viscous oil-like product was pumped from MW-104 in approximately 3 hours before evacuating the well. The well was allowed to recover for approximately 2.5 hours. Then approximately 1 quart was pumped in approximately 1 hour and the product was once again evacuated from the well.

The product present in the river sediments consists of thin lenses of oil like product and roofing pitch within the river silt. At the near shore Vibracore and hand auger sampling locations, the lenses are more prevalent and increase in thickness and abundance with depth to the maximum depth sampled (approximately 20 ft). CPT/ROSTTM locations CPT-R7 and CPT-R10 (closest inland ROSTTM locations) show the product lenses extending to between approximately 27 and 31 ft below the top of sediment. The product lenses in the river silt increase in depth eastward (CPT-R1 contains coal tar between approximately 30 and 50 ft below ground surface). The surface sediment in most areas appears to contain little to no product. Figure 5-1 shows the lateral extent of product. The ROSTTM data is presented on Figure 4-8 and extent of product is also presented on cross-section Figures 4-4, 4-5, 4-6 and 4-7.

The interpreted extent of heavy-end product (product is defined as a potentially mobile, separate phase liquid) presented in Figure 5-1 is a conservative estimate based on all the investigative techniques utilized. On the west side of the site data points are located on both the east and west sides of New River Road, but no data was collected from below New River Road during this RSI. Based on reports by USEPA that product was encountered during road construction activities the area of New River Road is included in the extent of heavy-end product. On the south side of the interpreted extent of heavy-end product monitoring wells MW-107 and MW-106 are located. Some soil staining and coal tar-like odor were detected at these locations but no free-phase product, therefore, these locations are not included within the extent of heavy-end product. Within the river sediment are ROSTTM locations CPT-R2, CPT-R5 and CPT-R6. These locations are interpreted as being beyond product extent, based on the low fluorescence response (less than 4% compared to 15% or higher in areas of visible product) and the signature of wavelength response (340nm is low but 490nm is not high enough). The ROSTTM response measured at locations CPT-R2, CPT-R5 and CPT-R6 is interpreted as heavy-end product similar and possibly related to the Quanta Resources Site product, but more of a typical "background" hydrocarbon contamination present in Hudson River sediments. USEPA investigations of the lower Hudson River show total PAH concentrations in sediment ranging from approximately 6 to 200 mg/Kg [USEPA, 1998].

6. EXTENT OF CONSTITUENTS OF INTEREST

6.1 Overview

This section presents an evaluation of the extent of COIs in soil, sediment, and groundwater at the Quanta property and at neighboring properties, which comprise the study area for the RSI. This evaluation was based on results from analyses of samples obtained during the RSI as well as results from previous investigations performed at and around the site. Tables 6-1 to 6-4 provide summaries of analytical results and Appendix G contains a computer disk of all data.

6.2 Evaluation of COIs

The COIs for the RSI were identified based on the results of previous investigations at the site and neighboring properties and were approved by the USEPA per their review and approval of the Site Operation Plan [GeoSyntec, 1998]. Results were evaluated for a total of 356 soil and 9 groundwater samples that were analyzed for a range of constituents, including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) (which include polycyclic aromatic hydrocarbons (PAHs)), PCBs, and metals (including antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, and zinc). The COIs that were identified for the RSI included the following:

- PAHs, arsenic, chromium, and lead in soil;
- PAHs, arsenic, chromium, and lead in sediment; and
- VOCs, SVOCs, arsenic, chromium, and lead in groundwater.

6.3 Extent of COIs in Soil

Soil samples obtained during the RSI were analyzed for PAHs, arsenic, lead, and chromium, which were identified as COIs in the approved Site Operation Plan; selected

samples were also analyzed for PCBs and VOCs to further evaluate the extent of these constituents in soils in the study area. Results from analyses of these samples were combined with results from previous investigations in order to assess the extent of COIs in soil in the former area of operations on and in the vicinity of the Quanta property. Comprehensive soil sampling results are presented in Table 6-1 for all soil samples that have been collected within the study area. Soil sampling locations are shown in figure 6-1 and results are presented for VOCs, PAHs, PCBs, arsenic, chromium, and lead in soil in Figures 6-2 through 6-7, respectively. It should be noted that most soil data from the Celotex and Lustrelon properties were obtained during previous investigations and may not represent current conditions in these areas due to ongoing cleanup and construction operations.

6.3.1 Extent of VOCs in Soil

During the RSI, 24 soil samples were obtained from multiple depths at 14 locations for VOC analysis in addition to the 21 soil samples that were analyzed for VOCs during previous investigations. Examination of Table 6-1 and Figure 6-2 reveals that VOC detections were scattered in soil in the area of investigation, and that BTEX constituents were the primary VOCs found in soil samples. VOCs were detected at various depths in the area of investigation, ranging from surface soils to 23 ft below ground surface (bgs). Most samples containing VOCs contained concentrations of total VOCs below 40 mg/kg. The highest concentrations of VOCs were found in samples collected from visibly contaminated site soils having a strong organic odor. These samples were located in the southeast portion of the Celotex property and along the northern border of the Quanta property, where VOCs were also detected in groundwater. Total VOC concentrations up to 742 mg/kg were observed in soils to depths of 18 ft bgs in this area. VOC contamination does not appear to be widespread in soil within the study area, since low to non-detectable concentrations were found in other areas of the site.

6.3.2 Extent of PAHs in Soil

PAHs were analyzed and were detected in all 49 soil samples collected during the RSI in addition to the 246 soil samples that were analyzed for PAHs during previous

investigations. Soil samples were collected during the RSI from three categories of soil and/or fill: (i) soil containing product, which comprised soil that contained visible separate phase of product such as hard roofing pitch, very viscous tar, or less viscous creosote product: (ii) stained soils, which consisted of soils that were smeared with product, or soils that contained a sheen; and (iii) visibly clean soils. As shown in Figure 6-3, PAH detections occur across the entire area of investigation. Samples with elevated PAH concentrations (>3000 mg/kg) are grouped in two areas within the study area. The first area comprises a cluster of samples, including C-45, C-46, C-47, and C-50, located in the western portion of the Celotex property that were collected by Enviro-Sciences during their 1997 investigation at the Celotex and Lustrelon properties. These samples were obtained from similar depths, ranging between 6.5 to 8.5 ft bgs. The samples represent the deepest samples obtained from each location, and the vertical extent of contamination was not bounded at that time. Samples collected from test trenches (T-5 and T-6) during the RSI confirmed the presence of significant concentrations of PAHs in this area, but lower concentrations were measured in the RSI samples than were previously found. The sample collected at a depth of 2 feet bgs from T-5 contained the highest total PAH concentrations of the samples from T-5 and T-6. This sample consisted of black stained soil that contained a creosote-type odor. These samples were obtained from an area of that was not on or in the immediate vicinity of former operations areas on the Quanta property. Rather, these samples were obtained in the vicinity of former vacuum truck company operations. Examination of the 1980 aerial photo (Figure 2-3) indicates the presence of stained surface soils in this area, as evidenced by the dark-colored area on this photo in the western portion of the Celotex This area is currently being managed under NJDEPs remediation program and not believed to be associated with industrial activities related to the roofing plant or waste oil recycling at the Quanta Property.

The second grouping of elevated PAH concentrations were found during the RSI in surface and shallow subsurface (1 to 5 ft bgs) soils on the Quanta property. These samples, which included samples from locations T-1, T-2, T-8, MW-103, and MW-105, were collected from soils that contained visible coal tar product and/or substantially stained soil or fill, and a strong organic odor. These samples contained elevated total PAH concentrations ranging from 7,840 mg/kg to 31,600 mg/kg at depths ranging from surface soils to 5 ft bgs. Consistent with the results from test trenching activities

conducted during the RSI (Section 4.2.1), these elevated PAH concentrations appear to indicate the presence of coal tar product in this portion of the site. Deeper samples were obtained from most of these sampling locations. These deeper samples contained much lower concentrations of PAHs and provided information to bound the vertical extent of PAH contamination in this area of the Quanta property.

Elevated PAH concentrations were also observed in a single sample from MW-106 at a depth of 18 ft bgs south of the Spencer Kellogg property. The elevated PAHs were bounded vertically and to the southwest (MW-109) and northwest (MW-107) by samples containing lower PAH concentrations. MW-106 is not considered to be within the area that was interpreted to contain mobile coal tar product (Figure 5-1). Split spoon samples obtained during drilling at MW-106 did show the presence of lightly stained soil and a slight coal tar odor, but the well did not yield mobile coal tar product during development and sampling purge operations.

Lower concentration levels of PAHs (300 to 3000 mg/kg) were detected in soil samples collected from a localized area along the southern border of the Celotex property (C-32, C-34, C-35, C-13, and C-57). These samples were obtained during the 1997 investigation by EnviroSciences from depths ranging from 5 to 7.5 ft bgs, except for C-57, which was obtained at a depth of 11.5 ft bgs. The vertical extent of PAHs was not bounded, however, since deeper samples were not collected at these locations. GeoSyntec did not visually assess the samples, and no information was provided by Enviro-Sciences about the appearance of these samples. The total PAH concentrations measured in these samples were less than 3000 mg/kg, and were consistent with concentrations measured in samples described as stained soil samples collected by GeoSyntec. Thus, these samples contain PAH concentrations that indicate the presence of a stained soil rather than coal tar product.

6.3.3 Extent of PCBs in Soil

Results from PCB analysis of soils are shown on Figure 6-4. PCBs were not detected in any of the six samples obtained by GeoSyntec from five locations during the RSI (T-4, T-6, T-8, CPT-24, CPT-21); PCBs were detected in 21 samples from previous investigations. Figure 6-4 shows that most soil samples from the current and previous

investigations contained non-detectable concentrations of PCBs. Samples containing detectable concentrations of PCBs were limited very localized areas within the study area that have been identified as former transformer locations. The highest concentrations of PCBs were measured during the Enviro-Science investigation in 1997 in samples from location HD-3D, which was obtained in the eastern portion of the Lustrelon property, northwest of the pier. Elevated PCB concentrations (963 and 6810 mg/kg) were detected at this location at depth, and were not bounded vertically. PCBs were also detected during the 1997 investigation in the western portion of the Lustrelon property (from locations LHA-1A, LHA-1D, and LHA-1E). PCBs were detected in surface soils along the western boundary of the Quanta property (from locations QE002, SF-3A, and SF-3C) at concentrations less than 20 mg/kg except for one sample, which contained 74 mg/kg total PCBs.

6.3.4 Extent of Metals in Soil

Arsenic was detected in 47 of the 49 soil samples analyzed during the RSI in addition to 174 samples in which arsenic was detected during previous investigations. Results of the RSI and previous investigations with respect to arsenic analyses are presented on Figure 6-5. This figure shows that low levels (concentrations up to 30 mg/kg) of arsenic occur throughout soils in the area of investigation. Higher arsenic concentrations were found in subsurface soil samples at scattered locations, with the highest arsenic concentrations (300 to 3370 mg/kg) detected in subsurface samples from the 1997 investigation in the western portion of the Celotex property (C-79, C-80, MW-110, and T-5) and in a few other subsurface samples (C-93, C-90, C-11) within the area of investigation.

Chromium was detected in all 49 soil samples analyzed during the RSI and in 125 samples analyzed during previous investigations. The results from the RSI and previous investigations are shown on Figure 6-6. Chromium was usually detected at concentrations below 40 mg/kg with chromium concentrations in this range widely distributed across the study area. Higher chromium concentrations were detected in a limited number of subsurface samples from the Enviro-Science investigation in 1997 at scattered locations across the area of investigation (e.g., C-77, C-92, and C-89), with no

apparent location groupings except that no chromium concentrations above 40 mg/kg were observed in soils on the Quanta property.

Results from the RSI indicated that lead was present in all 49 soil samples obtained during the RSI and in 181 samples from previous investigations. These results are presented on Figure 6-7. This figure shows that lead was detected at low concentrations in most soil samples obtained in the study area (usually below 400 mg/kg). Elevated lead concentrations (>1000 mg/kg) were measured in subsurface soils in the western portion of the Celotex property in the vicinity of where a gas tank was formerly buried on the property (Figure 2-3). Leaks of leaded gasoline from this gas tank would explain these elevated lead concentration. Elevated lead concentrations were also found in other scattered subsurface soil samples on the Lustrelon property, and in a single surface soil sample on the Quanta property.

Results from analyses of metals in soils during the RSI confirmed previous findings, which indicated that elevated metals concentrations were present primarily in subsurface soils at locations scattered around the site. This scattered distribution suggests that the elevated metals concentrations resulted from minor releases to the soil that did not cause widespread contamination at the site.

6.4 Extent of COIs in Sediment

Sediment samples obtained during the RSI were analyzed for PAHs, arsenic, lead, and chromium, which were identified as COIs based on results from previous investigations. Sediment samples were also analyzed for PCBs because PCB analyses had not been performed previously for sediment samples from the site. VOCs and other metals were also analyzed in two samples submitted for TCL/TAL analyses. Results from analyses of these samples were combined with results from previous investigations in order to assess the extent of COIs in sediment at the site. Comprehensive sediment sampling results are presented in Table 6-2 for all sediment samples that have been collected in the study area. Grain size percent moisture, pH and TOC data for surface sediment samples are presented in Table 6-3. Sediment sampling locations are presented on Figure 6-8; sediment results are presented with soil results for VOCs, PAHs, PCBs, arsenic, chromium, and lead in Figures 6-2 through 6-7, respectively.

6.4.1 Extent of VOCs in Sediment

Results from analyses of the two sediment samples that were analyzed for VOC constituents are presented in Table 6-2 and on Figure 6-2. The VOCs detected in these samples consisted of BTEX constituents, with total VOC concentrations of 0.82 and 28.2 mg/kg.

6.4.2 Extent of PAHs in Sediment

PAHs were detected in all 70 sediment samples that were collected during the RSI. Results for PAH analyses of sediment samples from the current and previous sediment investigations are presented on Figure 6-3. This figure shows that PAHs were detected in Hudson River sediment along the entire river bank. The highest concentrations of PAHs (>3000 mg/kg) were found in sediment adjacent to the Quanta property, at depths ranging from 2 to 12 ft below the top of sediment. These sediment samples were obtained from visibly stained sediments, some of which appeared to contain thin seams of coal tar product. Samples from this depth range contained decreasing concentrations of PAHs with increasing distance from the river bank, however, high concentrations were detected at even greater depths (from 17 to 20 ft below the top of sediment) in samples further from the bank (e.g., VC-05 and VC-06). The extent of elevated PAH concentrations in these deeper samples decreased as distance from the river bank was further increased, as demonstrated by samples obtained from CPT-8A and CPT-9A, which contained less than 3000 mg/kg total PAHs. The distribution of these elevated PAH concentrations in Hudson River sediment is consistent with the extent of coal tar product that was identified in sediment during the RSI (Section 5.3). Comparison of Figure 6-3 with Figure 5-1 shows that PAH concentrations in sediment were significantly lower (<300 mg/kg) in areas that do not contain coal tar product. PAH concentrations above 300 mg/kg were only found in two samples that were obtained outside of areas containing coal tar product. These two samples, SC-02 and SC-04, were located in sediment adjacent to the Lustrelon property.

6.4.3 Extent of PCBs in Sediment

Results from PCB analyses of sediment samples are presented on Figure 6-4. These results show that PCBs were widely distributed in Hudson River sediment, since PCBs were detected in 69 of 70 sediment samples that were analyzed during the RSI. PCB results also show that total PCB concentrations were below 2.0 mg/kg in most sediment samples. The maximum total PCB concentration detected in sediment was 6.5 mg/kg. PCBs were detected in sediment samples in areas where upland soils did not contain detectable concentrations of PCBs. This suggests that the wide distribution of PCBs in sediment is due to other off-site source areas. Other evidence supporting a conclusion of an off-site PCB source to the river sediment includes:

- PCB levels in the river sediment, locations spanning a distance of nearly 2000 ft of shoreline and 600 ft from the shore, are remarkably similar in concentration; and
- PCBs are very common contaminants in nearly every industrialized river in North America (see Figure 4-7 in Adams et al., 1998 for the lower Hudson River.

6.4.4 Extent of Metals in Sediment

Arsenic was detected in all 70 sediment samples that were analyzed during the RSI; arsenic results are presented on Figure 6-5. As shown on this figure, the highest arsenic concentrations (greater than 300 mg/kg) were detected in samples obtained from Hudson River sediment adjacent to the Lustrelon property (e.g., SC-01, SC-02, SC-04, and SC-05). High arsenic concentrations were observed in both surface and subsurface sediment in this area. Figure 6-5 shows that the upland soils in this area contained much lower concentrations of arsenic. Groundwater sampling locations are shown on Figure 6-9, and arsenic concentrations in groundwater are shown in Figure 6-10. As shown on this figure, arsenic concentrations in groundwater directly upgradient from the highest sediment arsenic ranged from non-detectable concentrations in MW-30 to 0.27 mg/L in MW-12. Because arsenic concentrations in upland soil were much lower than in sediment, and because groundwater did not contain high concentrations of arsenic, it

is unlikely that the upland area contains a source for the higher concentrations of arsenic observed in sediment. Section 6.5.4 contains a more detailed discussion of arsenic fate and transport in the upland area.

Most of the remaining sediment samples contained less than 300 mg/kg arsenic, with some higher concentrations (ranging between 30 and 300 mg/kg) observed in samples obtained adjacent to the river bank along the Celotex, Quanta, and Lever Brothers properties. Figure 6-5 reveals that arsenic concentrations in sediment were also higher than in adjacent soils in these areas. As shown in Figure 6-10 groundwater from monitoring wells upgradient from these sediment samples exhibited decreasing concentrations of arsenic in the downgradient direction toward the river, with concentrations ranging from nondetectable levels to 0.045 mg/L in groundwater samples immediately adjacent to the river. These results indicate that the upland soils and groundwater were not a source of arsenic in the river sediment. Direct discharges to the river from former operations on the properties, such as wastewater from the metal plating facility that operated in the southeast portion of the Celotex property (Figure 2-3) would explain the elevated arsenic concentrations in sediment.

Chromium was also detected in all sediment samples obtained during the RSI. As shown in Table 6-2 and on Figure 6-6, chromium concentrations ranged between 40 to 270 mg/kg in Hudson River sediment. Chromium concentrations were slightly higher in subsurface sediment samples, and chromium appeared to be evenly distributed laterally. Figure 6-6 also reveals that chromium concentrations were much higher in sediment than in soils in the study area, which indicates that uplands soils were not a source for chromium in Hudson River sediment. This is supported by groundwater data that reveal low (less than 0.034 mg/L) to nondetectable concentrations of chromium in groundwater in upland areas at the site.

Results from analyses of lead concentrations in Hudson River sediment samples are presented on Figure 6-7. These results indicate that lead was detected in all of the RSI sediment samples, usually at concentrations below 400 mg/kg. Higher lead concentrations (between 400 and 1540 mg/kg) were detected in samples obtained from sediment adjacent to the Lustrelon property (SC-01, SC-02, and SC-04) in an area where elevated arsenic and chromium concentrations were also measured. The consistent elevated concentrations of metals in sediment adjacent to the Lustrelon

property suggest that a source of metals may have been present in this area at one time. For the rest of the area of investigation, lead concentrations appeared to be evenly distributed in river sediment.

6.5 Extent of COIs in Groundwater

Groundwater samples obtained during the RSI were analyzed for VOCs, SVOCs, arsenic, lead, and chromium, which were identified as COIs based on results from previous investigations. PCBs and other metals were also analyzed in groundwater samples submitted for TCL/TAL analyses. Results from analyses of these samples were evaluated to assess the extent of COIs in groundwater at the site. Groundwater sampling locations are presented on Figure 6-9. Results from analyses of RSI groundwater samples are presented in Table 6-4 and on Figures 6-10 through 6-22.

6.5.1 Extent of VOCs in Groundwater

Results from VOC analyses of groundwater samples are presented on Figure 6-11. This figure shows that VOCs were detected in 23 of 27 groundwater samples collected during the RSI at total VOC concentrations up to 23.9 mg/L. BTEX constituents were the primary VOCs detected in groundwater in the southern portion of the site, which includes the Celotex, Quanta, and Lever Brothers properties. BTEX concentrations are also shown on Figure 6-11. The highest total VOC concentrations were detected in this area in MW-102 (23.9 mg/L) and MW-103 (15.60 mg/L) along the southern border of the Quanta property, and in MW-107 (9.1 mg/L), which is located south of MW-103 on the Lever Brothers property. Slightly lower BTEX and total VOC concentrations, ranging from 1.0 to 3.7 mg/L, were detected north and northeast of MW-103 on the Celotex property in samples from MW-6, MW-4, MW-1, MW-21, MW-2, and MW-7. Significantly lower BTEX and total VOC concentrations were detected in MW-31, which is located in the vicinity of these wells but is screened below the confining unit. This distribution of VOCs indicates the presence of a plume of BTEX constituents in groundwater at the site. These VOC concentrations in groundwater are bounded to the north and west by lower and/or non-detectable concentrations of VOCs, and by the Hudson River to the east. VOCs detected in MW-107 are not fully bounded to the south, although concentrations diminish to trace levels in the downgradient direction monitored at MW-106 and MW-109.

Concentrations of VOCs were lower in groundwater in the northern portion of the study area, which includes wells located on the Lustrelon property. Chlorinated ethane and ethene constituents, such as chloroethane, 1,1-dichloroethane, and trichloroethene, were the primary VOC constituents detected in groundwater in this area (MW-12, MW-29, MW-30, MW-9, MW-23, MW-14A, and MW-17A). Although a source of chlorinated VOCs in groundwater was not identified during the RSI, these results indicate the presence of a separate plume of chlorinated constituents, which are commonly used during metal processing, on the Lustrelon property. These VOC concentrations are bounded to the northwest and south by non-detectable concentrations of VOCs and by the Hudson River to the east; VOCs are not bounded to the north and west because additional samples were not obtained in these directions.

6.5.2 Extent of SVOCs in Groundwater

Total SVOC and total PAH results for RSI groundwater samples are presented in Figure 6-12. This figure shows that SVOCs were detected in groundwater throughout the southern portion of the study area on the Celotex, Quanta, and Lustrelon properties. PAH constituents were the primary SVOCs that were detected in groundwater at the site, although significant concentrations of phenols were also detected in samples from MW-102, MW-103, and MW-107. This finding is consistent other findings during the RSI, which indicated that coal tar products were present in soil on these properties, and PAHs are primary constituents in coal tar. Some types of coal tar and coal tar products also contain significant amounts of phenolic constituents (Hayes, et al., 1996). The highest concentrations of SVOCs (114 mg/l) and PAHs (30.9 mg/l) were detected in MW-102 along the southern edge of the Quanta property. Lower SVOC concentrations, ranging from 1.9 to 22.3 mg/l (PAHs from 1.6 to 16.0 mg/l), were detected in wells located to the north, south, and east of MW-103. This distribution of SVOCs and PAHs indicates the presence of a plume of these constituents in groundwater at the site, especially in areas where significant concentrations of these constituents were detected in soils or where product was encountered. Significantly lower SVOC concentrations were detected in MW-101 and MW-108, which are located northwest and southwest of MW-102, respectively, and in MW-31, which is screened below the confining unit. Groundwater samples obtained further north, from wells on the Celotex and Lustrelon properties contained low to non-detectable concentrations of SVOCs.

The decreasing PAH concentrations detected in wells downgradient from MW-102 (e.g., MW-103 and MW-7) indicate that PAHs are not very mobile in groundwater in this area.

6.5.3 Extent of PCBs in Groundwater

PCB concentrations were analyzed for four groundwater samples during the RSI per the USEPA-approved scope of work in the Site Operations Plan; results from these analyses are presented on Figure 6-13. This figure shows that PCBs were not detected in groundwater at the site.

6.5.4 Extent of Metals in Groundwater

The results from analyses of arsenic in groundwater, which are presented on Figure 6-10, indicate that arsenic was detected in 19 of 27 groundwater samples. The highest concentrations of arsenic were present in MW-107, MW-103, MW-21, MW-1, MW-31, and MW-20, which are located in the southern portion of the site on the Celotex, Quanta, and Lustrelon properties; and MW-6, which is located in the south western portion of the Celotex property. Arsenic concentrations in these wells ranged from 1.3 to 20.9 mg/l. These arsenic concentrations were bounded to the north and east by groundwater samples containing lower and/or non-detectable arsenic concentrations, but were not completely bounded to the south and west. Arsenic concentrations decreased consistently in the downgradient direction (east toward the river), which indicates that arsenic is not very mobile in ground water in the study area. These higher arsenic concentrations in groundwater indicate that arsenic is present in a dissolved form under the geochemical conditions present in groundwater at the site.

Chemical thermodynamic modeling was performed using the Facility for Analysis of Chemical Thermodynamics (FACT) [Bale et al., 1996] to evaluate arsenic speciation in groundwater at the site. Figure 6-14 presents the results of the arsenic speciation evaluation. This figure provides an Eh-pH (Pourbaix) diagram that shows the

predominant arsenic species that are present under a range of pH values and redox This figure was prepared using an arsenic concentration of 2.8 x 10⁻⁴ moles/l, which is equivalant to the highest arsenic concentration observed in groundwater at the site (20.9 mg/l). The wells at the site containing the highest concentrations of arsenic are plotted on the diagram according to the pH and Eh measured in the field, which are shown for all wells sampled during the RSI on figures 6-15 and 6-16, respectively. Figure 6-14 shows that the dominant form of arsenic in these wells is H₂AsO₃ (aq), which is a dissolved species known as arsenite. Arsenite species can be removed from solution by absorption to mineral surfaces or by precipitation with sulfide compounds [Evanko and Dzombak, 1997]. Arsenic speciation in the downgradient wells (MW-109, MW-106, MW-7 and MW-2) is shown in Figure 6-17. As shown on this figure, arsenite species are again expected to be dominant in MW-106, MW-109, and MW-2. The much lower concentrations of arsenic observed in these downgradient wells indicates that arsenic is being attenuated, probably as a result of the arsenite species sorbing to aquifer material and/or precipitating with sulfides as groundwater is transported from the upgradient wells that contain much higher concentrations of arsenic. Arsenic speciation in the presence of sulfides is shown on Figure 6-18. The pH and redox conditions observed in MW-7 indicate that arsenic also may be removed from solution by precipitation as arsenic or arsenic sulfide solids. These phenomena explain the low mobility of arsenic in groundwater at the site. Lower arsenic concentrations in other areas of the site that contain groundwater under reducing conditions can be explained by precipitation of arsenic sulfide solids if sufficient sulfide is present. Extreme reducing conditions that are amenable to the formation of arsine (AsH₃), a gaseous form of arsenic, which can be biotransformed to volatile and toxic methylated deriviations of arsine, were not observed in groundwater at the site (Figure 6-14).

Chromium was detected in 8 of 27 groundwater samples at concentrations up to 0.034 mg/l; results from chromium analyses in groundwater are presented on Figure 6-19. The extent of chromium in groundwater was limited to the southern portion of the site in wells located on the Celotex, Quanta and Lustrelon properties. These results are consistent with soil sampling results, which indicated that elevated metals concentrations resulted from minor releases and did not cause widespread contamination at the site. The highest concentrations of chromium were detected in

MW-31, MW-20, and MW-106. MW-31 and MW-20 contained groundwater under oxidizing conditions, whereas MW-106 contained groundwater under reducing conditions (Figure 6-16). Figure 6-20 presents a Pourbaix diagram for chromium at 6.5 x 10⁻⁷ moles/l, which is equivalent to the maximum concentration observed in groundwater at the site, 0.034 mg/l. As shown on this figure, under the conditions observed in MW-31 and MW-20, Cr(OH)² is the dominant chromium species in these wells. This form of chromium demonstrates a significantly lower mobility than more oxided forms, such as HCrO₄, due to sorption to clay and oxide minerals below pH 5 and due to low solubility above pH 5 that results in the precipitation of chromium hydroxide solid, Cr(OH)₃(s). Under the conditions observed in MW-106, chromium hydroxide solid is expected to precipitate. The equilibrium chromium concentration of 0.2 mg/l expected in the presence of this solid at the pH value measured in this well (6.79) is lower than the meaured chromium concentration of 0.025 mg/l. This may be due to measurement of chromium hydroxide particulates in the groundwater or sorbed chromium species. These mechanisms explain the low mobility of chromium in groundwater at the site, which is evidenced by lower or non-detectable concentrations in downgradient wells.

As shown on Figure 6-21, lead was detected in 5 of 27 groundwater samples at concentrations up to 0.058 mg/l. Similar to chromium, the extent of lead in groundwater at the site was limited to the southern portion of the site, which indicated that lead contamination at the site was limited. Lead was not detected in downgradient wells along the edge of the river with the exception of MW-109, which contained 0.035 mg/l of lead. Figure 6-22 presents a Pourbaix diagram for lead at 2.8 x 10⁻⁷ moles/l, which is equivalent to the maximum concentration observed in groundwater at the site, 0.058 mg/l. As shown in this figure, the dominant forms of lead in groundwater at the site are Pb²⁺ and PbOH, both of which represent soluble lead species. These forms of lead are not very mobile in groundwater above pH 4 due to sorption to mineral surfaces and precipitation of lead hydroxy or lead carbonate solids [Evanko and Dzombak, 1997]. These mechanisms explain the low mobility of lead in groundwater at the site, as evidenced by the non-detectable concentrations of lead measured in downgradient wells.

7. CONCLUSIONS

This RSI was conducted to achieve the following response action objectives (RAOs):

- delineate product (source) areas in the subsurface soils which may lead to the sheen development;
- gain an understanding of the mechanisms by which the sheen develops and migrates;
- determine the extent of the "site" based on the delineation of the nature and extent of soil, sediment and groundwater contamination from roofing plant and waste oil recycling operations at the Quanta property (with a focus on grossly contaminated media with a potential for off-site migration); and
- locate possible routes of migration to bordering properties and the Hudson River.

The study area for the RSI included the Quanta property and surrounding properties as well as the Hudson River sediment adjacent to these properties. The extent of product was evaluated using the ROSTTM technology, soil borings, test pit excavation and analysis of PAH constituents in soil and sediment in the vicinity of the Quanta property. The nature and extent of soil, sediment, and groundwater contamination was evaluated in the study area by sampling and analysis for COIs, which included VOCs, SVOCs, PAHs, PCBs, arsenic, chromium, and lead. Possible routes of migration were evaluated by conducting a geophysical investigation to locate subsurface pipes on or in the vicinity of the Quanta property, and by digging test trenches in the vicinity of suspected conduit locations.

Results from the RSI were combined with results from previous investigations performed within the study area to provide a comprehensive evaluation of the RAOs within the study area.

Soil

Soil samples were collected during the RSI to supplement existing information and delineate the extent of COIs (PAHs, arsenic, chromium, and lead) in soil. Results from the RSI and previous investigations indicate that the extent of COIs in the soil were fully delineated. Arsenic, chromium and lead were detected at scattered locations across the site, which indicates that metals contamination is limited to releases in localized areas and is not widespread. PCB detections were limited to soils in the vicinity of former transformer locations. PAHs were detected throughout soils at the site, but elevated concentrations were limited to source areas. A significant amount of soil data from the Celotex and Lustrelon properties were obtained during previous investigations. These properties are being managed by NJEPD and soils from these areas may have already been remediated.

Sediment

Sediment samples were collected during the RSI to delineate the extent of COIs including PAHs, PCB, arsenic, chromium, and lead, in Hudson River sediments adjacent to the Quanta property and neighboring properties. Results from the RSI indicate that the extent of impact from the study area on sediments was fully delineated. Arsenic, chromium, and lead were detected in sediment throughout the study area, and the distribution of these metals in sediment indicates that the upland soils are not a discernable source of metals in sediment. Similar to metals, PCBs were detected in sediment throughout the study area and this wide distribution indicates that the PCBs in sediment are not attributable to upland soils in the study area. PAHs were detected in sediment across the study area, with the highest PAH concentrations associated with source areas that were identified during the RSI.

Groundwater

Groundwater samples were collected during the RSI and were analyzed for VOCs, SVOCs, PCBs, arsenic, chromium, and lead in order to delineate the nature and extent of these constituents in groundwater in the study area. Results from the RSI indicated that arsenic, chromium, and lead were present in a localized area and transport of these constituents downgradient of this area is limited by geochemical conditions at the site.

PCBs were not detected in groundwater in the study area. VOCs were detected in groundwater throughout the study area, but results indicated that two separate plumes of VOCs exist. The first plume contains BTEX constituents in the southern portion of the study area in the vicinity of the Quanta and Celotex properties and south of the Quanta property. The second plume comprises chlorinated ethane constituents and is limited to the Lustrelon property in the northern portion of the study area. SVOCs were detected in groundwater primarily in the southern portion of the study area on the Quanta and Celotex properties and south of the Quanta property. This highest SVOC concentrations were detected in source areas identified during the RSI comprised of PAH constituents as well as phenolic constituents, which are known components of coal tar. The PAH concentrations in groundwater are substantially lower downgradient of the source area than in the source area. Also, the COIs concentrations are a order of magnitude lower in deeper wells than in shallower wells. Thus the data demonstrates there is neither a shallow or deep plume of grossly contaminated groundwater discharging into the Hudson River, nor migrating to other properties.

Extent of Product

Results from the RSI indicate that the extent of product within the upland area and in the river sediment is delineated. The product is the source material for soil, sediment, groundwater PAH contamination and sheen development. The presence of sheen is the main reason for the implementation of this AOC and the focus of this RSI.

The product extent is limited vertically in the upland setting by the presence of lower permeable native soil underlying the fill at an approximate depth of 12 ft. The product varies in viscosity from solid hard non-mobile product to thick oil-like product. Oil like product has collected in monitoring wells on the Quanta property and is present adjacent to the bulkhead. The product in the river sediment consists of tar and oil-like product found in thin lenses within the sediment. These lenses are more prevalent and closer to the top of the sediment near the bulkhead and become deeper farther off-shore.

The sheen appears to develop from both the upland source area and the sediment source area. Product in the fill adjacent to the bulkhead is flowable and at a higher elevation then the river sediments. This product can flow to the river through through the fill material which has "conduits" or zones of higher permeability due to abundance

of debris or poor compaction. The sheen has been observed to be more prevalent adjacent to the Quanta-Celotex property line adjacent to the bulkhead possibly indicating conduit in this area. Lenses of product within the river silt are more prevalent and closer to the sediment surface in the area of sheen (area contained within the boom). Product within the river sediment can flow to the surface of the sediment in this area. Also, EPA has reported areas of sheen sporadically developing outside the boom area. Product lenses are present atdepths of approximately 4 to 22 ft below the sediment line beyond the boom and upwelling of product from shallow product zones could produce, via gas bubble migration, these sporadic sheens.

Extent of Site

The AOC states that the extent of the site will be determined by the RSI and include the Quanta Resources Property and neighboring properties as appropriate based on the extent of contamination from coal tar roofing plant and waste oil recycling operations at the Quanta Property The study area included from North to South: Lustrelon Property, Celotex Property, Quanta Property, Spencer Kellogg Property and Lever Brothers Property. Based on knowledge of industrial operations and distribution of chemical constituents, it is concluded that the Site is bounded by the extent of contamination with the source area (i.e., coal tar product) occurring on the Quanta Property. This includes the Quanta Property, southeastern portion of the Celotex Property, Spencer Kellogg property and North portion of Lever Brothers. The extent of contamination is similar to the extent of heavy-end product presented in Figure 5-1 with dissolved-phase (groundwater) and absorbed-phase (soils) contamination present slightly beyond the extent of heavy-end product. Areas of contamination beyond this area have source areas unrelated to roofing plant and waste oil recycling operations at the Quanta Property, and therefore should not be included as part of the Site (e.g., arsenic contamination).

8. REFERENCES

Bale, et al, "Facility for Analysis of Chemical Thermodynamics (FACT)", 1996.

EDR, Sanborn, Inc., Field Survey Maps, 1900, 1911, 1930, 1950, and 1968.

Enviro-Sciences, Inc., "Remedial Investigation Report, Celotex property," June 1997.

Enviro-Sciences, Inc., "Remedial Investigation Report, Lustrelon property," June 1997.

- Evanko and Dzombak, "Remediation of Metals-Contaminated Soils and Groundwater," Groundwater Remediation Technology Analysis Center, 1997.
- Luthy, R.L., D.A. Dzombak, C.A. Peters, S.B. Roy, A.R. Ramaswami, D.V. Nakles, and B.R. Nott, "Remediating Tar-Contaminated Soils at Manufactured Gas Plan Sites," *Environ. Sci. Technol*, 1994, 28(6): 266A-276A.
- New Jersey Geologic Survey "Surficial Geology of the Weehawken and Central Park Quadrangles, Bergen, Hudson, and Passaic Counties, New Jersey," 1993.
- Parsons Engineering Science, Inc., "Data Report for Pre-Design Investigation at the Ouanta Resources Site," March 1998.
- Roy F. Weston, Inc., Miscellaneous site investigation memorandums, sample location drawings and analytical results, 1992, 1995-1998.
- U.S. Environmental Protection Agency Region 2, Administrative Order of Consent, Index Number III- CERCLA-98-0112, 30 September 1998.
- U.S. Environmental Protection Agency Region 2, "Sediment Quality of the NY/NJ Harbor System", March 1998.
- U.S. Geological Survey, "Bedrock and Engineering Geology Maps of New York County and Parts of Kings and Queens Counties, New York and Parts of Bergen and Hudson Counties, New Jersey," 1994.

SOIL SAMPLING RESULTS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	98313-01	98313-02	98313-03	98313-04	98313-05	98313-06	98313-07	98314-01	98314-02	98315-01	98315-02	98315-03	98315-04	98315-05	98315-06	98315-07	98320-01	98320-02	98320-03
Location	B-2	T-1	T-1	T-1	T-2	T-2	T-3	T-3	T-3	MW-103	MW-103	MW-103	MW-103	MW-103	B-3	B-3	MW-102	MW-102	MW-102
Date Sampled	11/9/98	11/9/98	11/9/98	11/9/98	11/9/98	11/9/98	11/9/98	11/10/98	11/10/98	11/11/98	11/11/98	11/11/98	11/11/98	11/11/98	11/11/98	11/11/98	11/16/98	11/16/98	11/16/98
Sampling Depth [ft bgs]	3	3	2	3	1.5	3	12	15	1	0	3	9	13	21	13	14	13	13	21
VOCs												,							
1,1,1-Trichloroethane	-								**										
1,1,2,2-Tetrachloroethane				44			••		-		••		ļ		_		*	••	
1,1,2-Trichloroethane			~-	•	1	••							-	1				**	
1,1-Dichloroethane			1								-			-				1	
1,1-Dichloroethene			4									-	1	-					
1,2-Dichloroethane					44							•						1	
1,2-Dichloropropane																			
2-Butanone (MEK)																			
2-Chloroethyl vinyl ether												'							
2-Hexanone	<u> </u>				`														
4-Methyl-2-Pentanone	<u> </u>																-		
Acetone		<u> </u>																	
Benzene																-			
Bromodichloromethane												-							
Bromoform				_=_				·		-									
Bromomethane																			
Carbon Disulfide	 																		<u> </u>
Carbon Tetrachloride																<u> </u>			<u> </u>
Chlorobenzene									_=										
Chloroethane	<u> </u>																		
Chloroform												-				-			
Chloromethane	<u> </u>							 `											
cis-1,2-Dichioroethene	<u> </u>																		
cis-1,3-Dichloropropene						*-	<u> </u>												
cis/trans1,2-Dichloroethene	ļ <u> </u>																	**	
Dibromochloromethane													_=						
Dichloromethane (Methylene Chloride)	<u> </u>														-				
Ethyl benzene											-								
Hexachloroethane	=				=									_=_					
Tetrachloroethene				_=_		· -			-										
Toluene			_=													<u></u>			
trans-1,2-dichloroethene				_==_				-										_=	
trans-1,3-Dichloropropene															\				
Trichloroethene																			
Trichlorofluoromethane																			
Vinyl chloride															'				
m&p-Xylene																			
o-Xylene	 																		
Xylenes (unspecified)															_==				
Total VOCs										:_						<u>'</u>			
PCBs																			
Aroclor-1016															-				
Aroclor-1221						<u></u>							=_						_=
Aroclor-1232	 -	<u></u> .											_=_						
Aroclor-1242	 																	_==	
Aroclor-1248													_=_						
Aroclor-1254																			
Aroclor-1260	 								·-										
Aroclor-1268																			
Total PCB	<u> </u>	<u> </u>							<u> </u>	<u></u> _		<u></u>	_=_	لــــــــــــــــــــــــــــــــــــــ					

SOIL SAMPLING RESEARCH [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

la	I00010 01	00010 00	00010.00	00000 04	00010.05	00010 06	22212.05	00000	0000	00014.01	00015 00	00014.00	00015 01	00015.05	00047.06	00015.00	00000 01	00000 00	00000 00
Sample ID		98313-02																	
Location	B-2	T-1	T-1	T-1	T-2	T-2	T-3	T-3	T-3		MW-103	_	MW-103		B-3	B-3	MW-102		MW-102
Date Sampled	11/9/98	11/9/98	11/9/98	11/9/98	11/9/98	11/9/98	11/9/98	11/10/98	11/10/98	11/11/98		11/11/98	11/11/98	11/11/98	11/11/98	11/11/98	11/16/98	11/16/98	11/16/98
Sampling Depth [ft bgs]	3	3	2	3	1.5	3	12	15	11	0	3	9	13	21	13	14	13	13	21
PAHs																		ļ	
Acenaphthene	0.052 J	640	300	190 J	1.1 J	400	3.0 J	1.0 J	0.95 J	1300	700	7.4	0.53	0.95 J	1.2 J	1.3	12.0	18.0 J	0.95
Acenaphthylene	0.070 J	160 J	19.0 J	11.0 J	0.19 J	58.0 J	0.23 J	2.1 U	2.4	180 J	62.0 J	0.81 J	0.11 J	0.27 J	5.7 U	0.12 J	4.1 J	14.0 J	0.36 J
Anthracene	0.32 J	720	550	320 J	2.6	280	4.5 J	4.0	1.9 J	850	440	5.6	0.46	0.51 J	0.36 J	1.2	9.8 J	30.0	0.88
Benzo(a)anthracene	1.0	430	1400	1900	8,6	560	4.9	12.0	4.0	520	240	5.1	0.19	0.40 U	0.67	1.3	7.1	25.0	0.45
Benzo(a)pyrene	0.86	290	1400	2500	7.8	680	3.9	11.0	7.8	370	130	4.4	0.15	0.40 ป	0,34 J	0.81	6.5	21.0	0.40
Benzo(b)fluoranthene	1.0	340	1600	2800	10.0	640	4.1	12.0	8.2	460	180	4.8	0.18	0.40 ป	0.42 J	1.0	5.8	18.0	0.41
Benzo(g,h,i)perylene	0.37 J	150 J	640	1400	4.8	360	1.8 J	4.9	2.2 J	200 J	88.0 J	2.4	0.095 J	4.0 U	5.7 U	0.48 J	3.9 J	12.0 J	0.20 J
Benzo(k)fluoranthene	0.47	140	640	1100	3.9	280	1.9	4.7	3.1	180	66.0	2.2	0.074	0.40 ป	0.20 J	0.43	2.0	6.7	0.13
Chrysene	0.92	440 J	1400	2300	9.6	620	5.6 J	14.0	3.8	420	180 J	4.5	0.16 J	4.0 U	0.50 J	· 1.0 J	7.2 J	30.0	0.49
Dibenzo(a,h)anthracene	0.12	47.0 J	190	390	1.4	100	0.42 J	1.6	0.79	52.0	20.0 J	0.70	0.031 J	0.40 U	0.57 U	0.11 U	0.98 J	3.0	0.050
Fluoranthene	1.8	1200	3000	2200	18.0	1100	12.0	26.0	. 5.4	2200	780	13.0	0.60	0.43 J	0.94 J	3,3	16.0	54.0	1.9
Fluorene	0.099 J	770	220	110 J	0.73 J	190	3.0 J	1.4 J	1.2 J	1300	680	10.0	0.63	1.0 J	0.42 J	1,2	13.0	22.0	1.0
Indeno(1,2,3-cd)pyrene	0.44	160	780	1500	4.9	360	1.9	5.2	2.7	230	85.0	2.1	0.10	0.40 U	0,57 U	0.50	3.4	9.7	0.18
Naphthalene	0.071 J	5300	79.0 J	100 J	0.29 J	360	100	6.9	0.77 J	900	3800	47.0	6.7	33.0	41.0	13.0	110	230	9.2
Phenanthrene	1.0	2500	1800	1200	11.0	950	17.0	23.0	2.5	4100	1800	29.0	1.6	2.4 J	1.0 J	5.2	41.0	110	4.0
Pyrene	1.5	890	2400	2200	16.0	900	10.0	23.0	5.4	1400	560	10.0	0.47	0.34 J	1.0 J	3.1	20.0	62.0	1.5
Total PAHs	10.1	14200	16400	20200	101	7840	174	151	53,1	14700	9810	149	12.1	38.9	48.1	33.9	263	665	22.1
Metals																			
Aluminum														-		_	-	1	*
Antimony									**						••			-	
Arsenic	2.6 B	20.5	32.8	37.2	12.1	20.8	2.6 B	1.6 U	12.6	17.0	8.2	67.2	13.1	27.0	10.5	10.3	4.3	5.0	6.0
Barium		-							••	1				4			ŀ		
Beryllium		••							3	**			**	p.0.					
Cadmium				-						-	-	-	1	-	-	-			
Calcium												-					-		
Chromium	14.7	9.3	7.1	6.3 B	4.1 B	13.0	19.2	16.4	5.4	4.8	5.5	12.2	10.1	16.2	26.6	27.5	11.3	12.3	10.7
Cobalt												-		-					
Copper			-				-					-			-	-	-		
Iron			-									-							
Lead	32.7	378	351	553	13.6	138	7.0	3.4	61.7	4540	108	13.2	4.5	12.4	62.4	61.2	6.8	7.1	5.2
Magnesium							••												
Manganese																			
Mercury					1				_										
Nickel						-													
Potassium								-											
Selenium				 .				·											
Silver																			
Sodium																		·	
Thallium															-				
Vanadium																			
Zinc .									_										
	I							لـــــــــــــــــــــــــــــــــــــ											

SOIL SAMPLING R. __TS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	08320-04	98321-01	98321-02	98323-03	08323-04	08324-01	08324-02	08324-03	08326-01	08326-M2	08326-03	08326-M	00160-01	00160_M	00172-01	99172-02	00172-03	00172-04	00172-05
Location	B-4	MW-101	MW-101	T-4	T-4	T-5	T-5	T-6	T-8	T-8	CPT-24		MW-105		MW-108		MW-106		
Date Sampled	11/16/98	11/17/98	11/17/98	11/19/98	11/19/98	11/20/98	11/20/98	11/20/98		11/22/98	11/22/98	11/22/98	6/18/99	6/18/99	6/21/99	6/21/99	6/21/99	6/21/99	6/21/99
Sampling Depth [ft bgs]	31	6	13	10	15.5	8	2	6	2	2	2.5	4.5	5	19	2	11	9	14	18
VOCs					10.0				<u> </u>	 	2,2								
1,1,1-Trichloroethane				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
1.1.2.2-Tetrachloroethane				2.7 U				0.18 U	9.1 U	1.5 U	0.13 U	0.16 U	2.9 U	0.18 U	0.15 U	0.18 U	0.26 U	0.28 U	12.0 U
1.1.2-Trichloroethane				8.2 U				0.53 U	27.0 U	4.4 U	0.40 U	0.47 U	8.8 U	0.54 U	0.44 U	0.53 U	0.78 U	0.84 U	35.0 U
1,1-Dichloroethane		_		14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
1.1-Dichloroethene			-	5.5 U				0.35 U	18.0 U	3.0 U	0.27 ป	0.31 U	5.8 U	0.36 U	0.29 U	0.35.U	0.52 U	0.56 U	24.0 U
1,2-Dichloroethane				5.5 U				0.35 U	18.0 U	3.0 U	0.27 Ú	0.31 U	5.8 U	0.36 U	0.29 U	.0.35 U	0.52 U	0.56 U	24.0 U
1,2-Dichloropropane				2.7 U				0.18 U	9,1 U	1.5 U	0.13 U	0.16 U	2.9 U	0.18 U	0.15 U	0.18 U	0.26 U	0.28 U	12.0 U
2-Butanone (MEK)				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	_						
2-Chloroethyl vinyl ether																			-
2-Hexanone				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
4-Methyl-2-Pentanone				14.0 U		**.		0.88 ป	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Acetone				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Benzene				2.4 J				0.18 U	9.1 U	1.7	0.13 U	0.16 U	2.9 U	0.18 U	0.15 U	0.18 U	0.15 J	0.28 U	12.0 U
Bromodichloromethane				2.7 U				0.18 U	9.1 U	1.5 U	0.13 U	0.16 U	2.9 U	0.18 U	0.15 U	0.18 U	0.26 U	0.28 U	12.0 U
Bromoform				11.0 U			_	0.70 U	36,0 U	5.9 U	0.53 U	0.62 U	12.0 U	0.73 U	0.58 U	0.71 U	1.0 U	1.1 U	47.0 U
Bromomethane				14.0 U		-		0.88 U	46.0 U	7:4 U	0.67 U	0.78 U	5.8 U	0.36 U	0.29 U	0.35 U	0.52 U	0.56 U	24.0 U
Carbon Disulfide	-			14.0 U	-			0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Carbon Tetrachloride				5.5 U	-			0.35 U	18.0 U	3.0 U	0.27 U	0.31 U	5.8 U	0.36 U	0.29 U	0.35 U	0.52 U	0.56 U	24.0 U
Chlorobenzene				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Chloroethane			`	14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	5.8 U	0.36 U	0,29 U	0.35 U	0.52 U	0.56 U	24.0 U
Chloroform				14.0 U	-			0.88 U	46.0 U	7.4 U	0.67 ป	0.78 ป	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Chloromethane				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	5.8 U	0.36 U	0.29 U	0.35 U	0.52 U	0.56 U	24.0 U
cis-1,2-Dichloroethene			44	14.0 U	••			0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
cis-1,3-Dichloropropene		**	-	14.0 U_			-	0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
cis/trans1,2-Dichloroethene			-			**	1	ł			ŧ	1			•			-	
Dibromochloromethane				14.0 U	•		-	0.88 ປ	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Dichloromethane (Methylene Chloride)			•	8.2 U				0.53 U	27.0 U	4.4 U	0.40 U	0.47 U	8.8 U	0.54 U	0.44 U	0.53 U	0.78 U	0.84 U	35.0 U
Ethyl benzene				190				0.70 ป	19.0 J	32.0	0.14 J	0.30 J					-		
Hexachloroethane			/	4.1 U		-		0.080 U	19.0 U	9.8 U	0.080 U	0.22 U		-		-			
Tetrachloroethene			-	2.7 U				3.2	9.1 U	1.5 U	0.13 U	0.16 U	2.9 U	0.18 U	0.15 U	0.18 U	0.26 U	0.28 U	12.0 U
Toluene				14.0 U				0.88 U	5.4 J	2.8 J	0.67 U	1.2	3.6 J	0.91 U	0.73 U	0.88 U	0.96 J	1.4 U	14.0 J
trans-1,2-dichloroethene				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
trans-1,3-Dichloropropene				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	15.0 U	0.91 U	0.73 U	0.88 U	1.3 U	1.4 U	59.0 U
Trichloroethene				2.7 U	<u> </u>			0.18 U	9.1 U	1.5 U	0.13 U	0.16 U	2.9 U	0.18 U	0.15 U	0.18 U	0.26 U	0.28 U	12.0 U
Trichlorofluoromethane				-		 .	-	-				-	-						
Vinyl chloride				14.0 U				0.88 U	46.0 U	7.4 U	0.67 U	0.78 U	5.8 U	0.36 U	0.29 U	0.35 U	0.52 U	0.56 U	24.0 U
m&p-Xylene											-			-					
o-Xylene		-	-												1-				
Xylenes (unspecified)				200			••	0.11 J	76.0	150	0.27 J	1.6	-						
Total VOCs			**	392				3.31	100	187	0.41	3.1	3.6	0	0	0	1.11	0	14
PCBs				0.000.00	0.07.55			0.000.00	0.050.55	0.050	0.001.55	0.000.75							
Aroclor-1016				0.083 U	0.076 U			0.080 U	0.078 U	0.079 U	0.081 U	0.088 U							
Aroclor-1221				0.083 U						0.079 U				-			**		
Aroclor-1232				0.083 U						0.079 U									
Aroclor-1242	-			0.083 U						0.079 U									
Aroclor-1248				0.083 U						0.079 U			-						
Aroclor-1254				0.083 U					0.078 U		0.081 U				-				
Aroclor-1260				0.083 U				0.080.0	0.078 0	0.079 U	0.081 U	0.088 U		,					
Aroclor-1268				0.083 U						0.079 U					-				
Total PCB				ND_	ND	**		ND	ND	0.14	ND	ND	·			**			

SOIL SAMPLING ABOUT S [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	98320-04	98321-01	98321-02	98323-03	98323-04	98324-01	98324-02	98324-03	98326-01	98326-02	98326-03	98326-04	99169-01	99169-02	99172-01	99172-02	99172-03	99172-04	99172-05
Location	B-4	MW-101	MW-101	T-4	T-4	T-5	T-5	T-6	T-8	T-8	CPT-24		MW-105		MW-108				
Date Sampled	11/16/98	11/17/98	11/17/98	11/19/98	11/19/98	11/20/98	11/20/98	11/20/98	11/22/98	11/22/98	11/22/98	11/22/98	6/18/99	6/18/99	6/21/99	6/21/99	6/21/99	6/21/99	6/21/99
Sampling Depth [ft bgs]	31	6	13	10	15.5	8	2	6	2	2	2.5	4.5	5	19	2	11	9	14	18
PAHs					25,15														
Acenaphthene	0,53	40.0	0.031 J	1.4 J	7.9 J	0.078 J	78.0	0.28 J	1500	470	1.3	4.3	1200	0.56 J	0.22 J	0.73 U	1.3 J	0.63	350
Acenaphthylene	0.30 J	4.7 J	0.36 U	41.0 U	1.3 J	0.065 J	5.8 J	0.42 J	32.0 J	35.0 J	0.51 J	0.42 J	260 J	0.085 J	0.24 J	0.73 U	0.58 J	0.18 J	25.0 J
Anthracene	0.59	57.0	0.040 J	1.2 J	7.4 J	0.20 J	70.0	0.68 J	730	480	1.4	3.0	1400	0.56 J	0.68 J	0.73 U	1.8	1.2	260
Benzo(a)anthracene	0.37	56.0	0.054	2.5 J	5.7	1.1	120	3.4	290	310	2.3	5.5	2100	0.42	2.6	0.033 J	1.5	2.0	120
Benzo(a)pyrene	0.29	52.0	0.037	4.1 U	4.0	1.2	130	3.8	200	150	2.6	4.7	2200	0.38	2.8	0.035 J	0.90	1.9	100
Benzo(b)fluoranthene	0.30	54.0	0.037	1.2 J	4.5	1.7	150	5.3	240	190	3.5	5.0	2400	0.42	4.5	0.013 U	1.5	2.0	100
	0.12 J	29.0 J	0.013 J	41.0 U	2.3 J	0.52	58.0	1.2	88.0 J	52.0 J	0.78 J	2.5	1300	0.42 0.16 J	0.63 J	0.073 U	0.37 J	1.0	45.0 J
Benzo(g,h,i)perylene							62.0		88.0	76.0		1.7	1100	0.19					
Benzo(k)fluoranthene	0.11	22.0	0.014 J	4.1 U	2.1	0.64_		2.1			1.2				1.4	0.073 U	0.64	0.90	49.0
Chrysene	0.39 J	55.0	0.042 J	1.6 J	4.6 J	1.2	140	4.1	260	340	2.8	6.3	2200	0.45 J	2,2	0.016 J	2.0	2.0	110 J
Dibenzo(a,h)anthracene	0.032 J	7.4	0.036 U	4.1 U	0.57 J	0.16	16.0	0.34	27.0	20.0	0.29	1.1							
Fluoranthene	1.1	150	0.10 J	5.0 J	20.0	2.5	310	8.2	1400	840	4.9	11.0	3600	0.92	5.0	0.041 J	5.1	3.8	380
Fluorene	0.64	35.0 J	0.027 J	1.9 J	13.0	0.065 J	66.0	0.20 J	1400	520	1.3	0.94 J	1400	0.60	0.21 J	0.73 U	1.2 J	0.51 3	310
Indeno(1,2,3-cd)pyrene	0,14	28.0	0.016 J	4.1 U	2.5	0.63	62.0	1.5	91.0	64.0	0.94	1.8	1300	0.18	0.70	0.073 U	0.36	1.1	51.0
Naphthalene	5.1	74.0	0.041 J	81.0	100	0.054 J	47.0	0.27 J	3200	1300	5.2	1.2 J	3400	1.4	0.13 J	0.73 U	3.6	0.79	1900
Phenanthrene	2.3	200	0.14 J	7.0 J	44.0	0.69	290	4.4	3200	1400	6.5	9.7	4400	1.7	2.6	0.045 J	5.4	3.7	970
Pyrene	0.95	120	0.094 J	4.3 J	15.0	1.8	210	7.4	1000	710	5.1	11.0	3300	0.90	5.8	0.043 J	4.3	3.4	310
Total PAHs	13,3	984	0.693	107	235	12.6	1810	43.6	13700	6960	40.6	70.2	31600	8,93	29.7	0.193	30.6	25.1	5080
Metals																			
Aluminum				1160				4770	1950	8330	7490	4050				-			
Antimony				1.1 U				35.7	2.6	1.3 B	1.1 B	1.2 U							
Arsenic	6.5	20.5	1.8	161	1.2	528	14.7	236	19.9	14.2	15.1	57.7	53.7	8.7	2.1 B	3.2 U	28.5	32.4	255
Barium				80:8				175	66.2	113	118	196	<u> </u>					••	
Beryllium				0.060 B				0.28 B	0.22 B	0.47	0.48	0.45 B							
Cadmium				0.099 U				0.68 B	0.30 B	2.7	2.8	0.38 B							
Calcium				1060 B				6280	6210	49200	48600	7860			-	1			••
Chromium	24.1	30.6	9.1	14.1	2.7	9.2	46.7	14.1	8.4	35.0	38.1	16.9	17.3	25.7	17.6	24.8	20.4	12.1	676
Cobalt				0.46 B				4.1 B	4.6 B	6.3 B	5.2 B	15.3							
Copper				18.3				414	87.4	56.4	59.9	171	-			-			
Iron		1	1	22100		-	-	22800	11600	14500	13700	46800		-	,				-
Lead	15.4	124	5.3	108	6.1	1940	155	10800	164	68.4	86.5	342	492	41,5	58.2	11.4	108	75.6	575
Magnesium		1	-	226 B		-	-	1000 B	738 B	4300	3800	2980			,			-	
Manganese				20.7_			 ,	102	62.8	187	183	243			-		1		
Мегсигу			••	0.27		-		3.6	0.41	0.15	0.17	0.93			£				
Nickel			••	1.7 B				10.9	13.9	51.3	56.0	23.7							
Potassium				2050_				779 B	130 B	663 B	561 B	347 B	1			-			
Selenium				1.0 U				1.3	1.2	0.99 U	1.0 U	1.2 B			-				
Silver				0.35 U				1.8 B	0.33 U	0.33 U	0.34 U	0.37 U	-		~-				
Sodium				318 B				544 B	116B	1490	1430	621 B				_			
Thallium				2.4 B				1.1 U	1.1 U	1.1 U	1.1 U	1.2 U			~				
Vanadium				33.4				65.6	25.0	64.7	75.9	26.9							
Zinc	-			7.6				324	145	609	593	264							
																			

Sample ID	99172-06	99172-07	99173-01	99173-02	99174-01	99174-02	99174-03	99174-04	99175-01	99175-02	99175-03	B-1 A-1	R-1A-2	B-1B-1	B-1B-2	B-1C-1	B-1C-2	B-2A-1	B-2A-2	B-2B-1
Location	MW-106		MW-109	TP-12	MW-109	MW-107			MW-110				B-1A	B-1B	B-1B	B-1C	B-1C	B-2A	B-2A	B-2B
Date Sampled	6/21/99	6/21/99	6/22/99	6/22/99	6/23/99	6/23/99	6/23/99	6/23/99	6/24/99	6/24/99	6/24/99		2/28/97		2/28/97		2/28/97	2/27/97	2/27/97	2/27/97
Sampling Depth [ft bgs]	23	18	7	10	20	13	17	23	12	20	24	1	4.5	1	5.5	1	6.5	8.5	12.5	9
VOCs		16		10	20	13	/		12	20			7.5		J.D.		0.5	0.5		
	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0,58 U	0.66 U	0.66 U	0.55 U	 	_		-					 _
1,1,1-Trichloroethane	0.97 U					0.63 U	0.12 U	0.12 U	0.13 U	0.13 U	0.11 U									
1,1,2,2-Tetrachloroethane		1.6 U	0.13 U	0.094 U	0.19 U			0.12 U												
1,1,2-Trichloroethane	0.58 U	4.7 U	0.39 U	0.28 U	0.56 U	0,38 U	0.36 U		0.40 U	0.39 U	0.33 U	 -								
1,1-Dichloroethane	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U									
1,1-Dichloroethene	0.39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0.26 U	0.26 U	0.22 U	<u> </u>	· 							
1,2-Dichloroethane	0.39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0.26 U	0.26 U	0.22 U								. 	
1,2-Dichloropropane	0.19 U	1.6 U	0.13 U	0.094 U	0.19 U	0.12 U	0.12 U	0.12 U	0.13 U	0.13 U	0.11 U				_=					
2-Butanone (MEK).										-					_=_					
2-Chloroethyl vinyl ether					'															<u> </u>
2-Hexanone	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U			-						
4-Methyl-2-Pentanone	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U_	0.63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U	_=_								
Acetone	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.77	0.66	0.58 U	0.67	0.86	0.55 U						_=			
Benzene	0.19 U	17.0	0.13 U	0.094 U	0.19 U	0.12 U	0.47	1.5	0.20	0.13 U	0.11 U	<u> </u>					·			
Bromodichloromethane	0.19 U	1.6 U	0.13 U	0.094 U	0.19 U	0.12 U	0.12 U	0.12 U	0.13 U	0.13 U	0.11 U									
Bromoform	0.77 บ	6.3 U	0.52 U	0.38 U	0.75 U	0.50 บ	0.48 U	0.47 U	0,53 U.	0.53 U	0.44 U	<u></u> ·					·			-
Bromomethane	0.39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0.26 U_	0.26 U	0.22 U					-			-	
Carbon Disulfide	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0,66 U	0.66 U	0.55 U									
Carbon Tetrachloride	0.39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0.26 U	0.26 U	0.22 U					<u> </u>				
Chlorobenzene	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0,66 U	0.66 U	0.55 U				-					
Chloroethane	0,39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0,26 U	0.26 U	0.22 U		-	••	-	-				-
Chloroform	0.97 U	7.9 U	0.65 U	0.47 U	0.94 ป	0,63 U	0.60 U	0.58 U	0,66 U	0.66 U	0.55 U		-			-				_
Chloromethane	0.39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0,26 U	0.26 U	0.22 U			8-8	1				. ••	
cis-1,2-Dichloroethene	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0,63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U	-	⊶ ~.		-	-	-			
cis-1,3-Dichloropropene	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 ป	0.58 U	0.66 U	0.66 U	0.55 U	-	-							
cis/trans1,2-Dichloroethene							**		**	 .	*		1			-	1		,	
Dibromochloromethane	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U									
Dichloromethane (Methylene Chloride)	0.58 U	4.7 U	0.39 U	0.28 U	0.56 U	0.38 U	0.36 U	0.35 U	0.40 U	0.39 U	0.33 U	-				**	_	·		
Ethyl benzene					1		••	•	1								1			
Hexachloroethane		-		-							-					-		_		
Tetrachloroethene	0.19 U	1.6 U	0.13 U	0.094 U	0.19 U	0.12 U	0.12 U	0.12 U	0.13 U	0.13 U	0.11 U		_							
Toluene	0.97 U	20:0	0.65 U	0.47 U	0.94 U	0,63 U	0.52 J	0.90	0.66 U	0.66 U	0.55 U	-	-		_					
trans-1,2-dichloroethene	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U									
trans-1,3-Dichloropropene	0.97 U	7.9 U	0.65 U	0.47 U	0.94 U	0.63 U	0.60 U	0.58 U	0.66 U	0.66 U	0.55 U									
Trichloroethene	0.19 U	1.6 U	0.13 U	0.094 U	0.19 U	0,12 U	0.12 U	0.12 U	0.13 U	0.13 U	0.11 U	-								
Trichlorofluoromethane																		-		
Vinyl chloride	0.39 U	3.1 U	0.26 U	0.19 U	0.37 U	0.25 U	0.24 U	0.23 U	0.26 U	0.26 U	0.22 U									
m&p-Xylene			-		-		-													_
o-Xylene				-																
Xylenes (unspecified)																				
Total VOCs	0	37	0	0	0	0.77	1.65	2.4	0.87	0.86	0				_					
PCBs	<u> </u>													-						
Aroclor-1016	<u> </u>																			
Aroclor-1010 Aroclor-1221	<u> </u>												 -							
Aroclor-1221 Aroclor-1232																				
Aroclor-1232 Aroclor-1242																				
Aroclor-1242 Aroclor-1248					**															
Aroclor-1248 Aroclor-1254																				
فالمنطقة المتعلقة المتعلقة والمتعلقة										_=-					_=_					
Aroclor-1260									_=							_=_			_=_	
Aroclor-1268																_=_	_=			
Total PCB														_ 					_=	

Sample ID	99172-06	99172-07	99173-01	99173-02	99174-01	99174-02	99174-03	99174-04	99175-01	99175-02	99175-03	B-1A-1	B-1A-2	B-1B-1	B-1B-2	B-1C-1	B-1C-2	B-2A-1	B-2A-2	B-2B-1
Location	MW-106	TP-10	MW-109	TP-12	MW-109	MW-107	MW-107	MW-107	MW-110	MW-110	MW-110	B-1A	B-1A	B-1B	B-1B	B-1C	B-1C	B-2A	B-2A	B-2B
Date Sampled	6/21/99	6/21/99	6/22/99	6/22/99	6/23/99	6/23/99	6/23/99	6/23/99	6/24/99	6/24/99	6/24/99	2/28/97	2/28/97	2/28/97	2/28/97	2/28/97	2/28/97	2/27/97	2/27/97	2/27/97
Sampling Depth [ft bgs]	23	18	7	10	20	13	17	23	12	20	24	.1	4.5	_ 1	5.5	1	6.5	8.5	12.5	9
PAHs			,																	
Acenaphthene .	11.0	9.1	49.0	0.0086 J	2,3	0.36 J	0.36 J	0.80	2.9	0.21 J	0.070 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	1.2 J	4.0 J	2.4 J	0.40 U	0.23 J	0.030 J	0.069 J	0.068 J	0.15 J	0.41 U	0.018 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	11.0	7.6	72.0	0.40 U	2.3	0.0100 J	0.40 U	0.50	0.50	0.12 J	0.11 J	ND	ND	ND	ND	0.00068	ND	0.00010	0.00021	ND.
Benzo(a)anthracene	5.0	6.9	120	0.040 U	5.2	0.040 U	0.040 U	0.14	1.3	0.38	0.29	ND	ND	ND	ND	0.0022	ND	0.00028	0.00052	ND
Benzo(a)pyrene	4.0	6.1	110	0.040 U	5.5	0.040 U	0.040 U	0.067	1.3	0.39	0.27	ND	ND	ND	ND	0.0022	ND	0.00030	0.00050	ND
Benzo(b)fluoranthene	3.8	6.8	130	0.040 U	6.0	0.040 U	0.040 U	0.088	1.7	0.51	0.33	ND	ND	ND	ND	0.0029	ND	0.00045	0.00074	ND
Benzo(g,h,i)perylene	1.9 J	3.1 J	56.0	0.40 U	2.9	0.40 U	0.40 U	0.021 J	0.74	0.25 J	0.18 J	ND	ND	ND	ND	0.00069	ND	0.00012	0.00019	ND.
Benzo(k)fluoranthene	1.5	2.8	55.0	0.040 U	2.8	0.040 U	0.040 U	0.032 J	0.72	0.20	0.14	ND	ND_	ND	ND	0.0013		0.00018		ND
Chrysene	4.7	7.6	120	0.40 U	5.6	0.40 U	0.40 U	0.14 J	1.6	0.45	0.33 J	0.00012	ND	ND	ND	0.0020	_	0.00031	0.00057	ND
Dibenzo(a,h)anthracene							'		 .			ND	ND	ND	ND	ND	ND	ND	ND_	0.00013
Fluoranthene	14.0	20.0	210	0.40 U	10.0	0.40 U	0.40 U	0.81	3.1	0.78	0.67	0.00020	ND	ND	ND	0.0044		0.00057	0.0011	ND
Fluorene	9.2	8.8	35.0	0.40 U	1.7	0.073 J	0.31 J	0.89	0.67	0.12 J	0.089 J	ND	ND	ND	ND	0.00028	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	2.1	3.5	66.0	0.040 U	3.1	0.040 U	0.040 U	0.025 J	0.80	0.25	0.17	ND	ND	_ND	ND	0.00077	ND		0.00020	ND
Naphthalene	28.0	140	27.0_	0.12 J	1.7	3.7	1.6	1.9	1.2	0.12 J	0.065 J	ND	ND	_ND_	ND	ND	ND	ND_	ND	ND
Phenanthrene	34.0	29.0	190	0.013 J	7.5	0.11 J	0.25 J	2.2	2.1	0.71	0.56	ND	ND	ND	ND	0.0019		0.00036	0.00096	ND
Pyrene	14.0	19.0	170	0.40 U	9.3	0.40 U	0.40 U	0.65	2.8	0.70	0.61	0.00016	ND	ND	ND	0.0037	ND	0.00059	0.0013	ND
Total PAHs	145	274	1410	0.142	66.1	4.28	2.59	8.33	21.6	5.19	3.9	0.0005	0		0	0.023	0	0.0033	0,0066	0.0001
Metals																				
Aluminum															-					
Antimony																				
Arsenic	30.3	9.4	66.8	25.8	11.8	44.2	159	203	666	14.3	5.2	18.3	5.2	2.0	17.7	1.0	4.7	4.8	33.4	6.5
Barium												-				<u> </u>				
Beryllium														-:		<u> </u>				
Cadmium	 	 -										ND	ND	ND	ND	ND	1.6	0.70	0.61	0.40
Calcium		260					100						-							
Chromium	40.8	26.2	56.5	24.7	32.4	9.9	12.0	17.8	9.1	10.4	17.5								_=_	
Cobalt			<u> </u>											_=_					_=_	
Copper	 													_=_						
Iron	160		161	96.2	68.0	3.9		9.1	1720	107	15.9	26.2			-				_=	
Lead	160	70.1		86.3			5.0	9.1				36.3	9.5	4.8	5.0	8.6	62.2			·
Magnesium																	_=_			
Manganese												0.17	0.020	0.020	 ND	0.020	0.18			
Mercury Nickel												0.17	0.020							
Potassium													-	-=-				_=_		
Selenium	 																-			
Silver																				
Sodium																			-	=
Thallium													-		==				=	
Vanadium																		 -		
Zinc																				
ranc .	لـــــــــــــــــــــــــــــــــــــ		لـــــــــــا									لــتــا	لستسا	لستب						لبــــــــــــــــــــــــــــــــــــ

	B-2B-2	B-2C-1	B-2C-2	B-2D-1	B-2D-2	B-3A-1	D-3A-21	D-3D-1	I B-3B-2	IB-3D-1	B-3D-2	B-3E-1	D-3D-4	B-4A-1	B-4A-2	B-4B-1	B-4B-2	B-4C-1	B-4C-2	C-10-1	IC-10-2	C-11-1
Location	B-2B	B-2C	B-2C	B-2D	B-2D	B-3A	B-3A	B-3B	B-3B	B-3D	B-3D	B-3E	B-3B	B-4A	B-4A	B-4B	B-4B	B-4C	B-4C	C-10	C-10	C-11
	2/27/97	2/26/97	2/26/97	2/26/97	2/26/97		3/19/97	4/3/97	4/3/97	4/3/97	4/3/97	4/3/97	4/3/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	4/9/97	4/9/97	4/9/97
Sampling Depth [ft bgs]	13.5	9	13.5	12.5	16.5	5.5	14.5	9.5	13.5	11.5	13	11	13	10.5	15.5	10.5	15.5	10.5	14.5	5.5	7.5	6.5
VOCs																					7.5	
1.1.1-Trichloroethane												-				-						
1,1,2,2-Tetrachloroethane													-									
1,1,2-Trichloroethane																-						
1,1-Dichloroethane																4-					-	
1,1-Dichloroethene													-									
1,2-Dichloroethane																			-			
1,2-Dichloropropane																				_		
2-Butanone (MEK)																				_		
2-Chloroethyl vinyl ether						-								_		**		_				-
2-Hexanone																						
4-Methyl-2-Pentanone													-									
Acetone																-						-
Benzene Bromodichloromethane						==																-
				-																		
Bromoform Bromomethane									-				-									-
						-:-							-			-			-			 -
Carbon Disulfide								-														
Carbon Tetrachloride			=										-					-				
Chlorobenzene																						 -
Chloroethane																						
Chloroform																						
Chloromethane														-								
cis-1,2-Dichloroethene																						
cis-1,3-Dichloropropene																						 -
cis/trans1,2-Dichloroethene											-							·				-
Dibromochloromethane																						
Dichloromethane (Methylene Chloride)																						
Ethyl benzene				-																		
Hexachloroethane																_=				ND	ND	ND
Tetrachloroethene										·												
Toluene												_==										
trans-1,2-dichloroethene														-								
trans-1,3-Dichloropropene						_=_										**						
Trichloroethene	_=_				_=_	_=_																
Trichlorofluoromethane	_=_					_=-																
Vinyl chloride	_=_					_=_																
m&p-Xylene			-																			
o-Xylene		·																				-
Xylenes (unspecified)	_=_						_=_								<u> </u>							
Total VOCs								<u> </u>														
PCBs																						
Aroclor-1016					_=_												 .					
Aroclor-1221															·							
Aroclor-1232												-										
Aroclor-1242					_=_		_=_															
Aroclor-1248																						
Aroclor-1254			-			_ =				-												
Aroclor-1260								**										\(\)	am -			
			4						-	1						\$.						
Aroclor-1268	·																					

T SOIL SAMPLING RESULTS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	B-2B-2	B-2C-1	B-2C-2	B-2D-1	B-2D-2	B-3A-1	B-3A-2	B-3B-1	B-3B-2	R-3D-1	B-3D-2	R-3E-1	B-3E-2	B-4A-1	B-4A-2	B-4B-1	B-4B-2	B-4C-1	B-4C-2	C-10-1	C-10-2	C-11-1
Location	B-2B	B-2C	B-2C	B-2D	B-2D	B-3A	B-3A	B-3B	B-3B	B-3D	B-3D	B-3B	B-3E	B-4A	B-4A	B-4B	B-4B	B-4C	B-4C	C-10	C-10	C-11
	2/27/97	2/26/97		2/26/97	+		3/19/97	4/3/97	4/3/97	4/3/97	4/3/97	4/3/97	4/3/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	4/9/97	4/9/97	4/9/97
Sampling Depth [ft bgs]	13.5	9	13.5	12.5	16.5	5.5	14.5	9.5	13.5	11.5	13	11	13	10.5	15,5	10.5	15.5	10.5	14,5	5.5	7.5	6.5
PAHs					-																	
Acenaphthene	ND	ND	0.00088	0.25	0.029		_							ND	ND	ND	ND	0.0013	ND	0.23	4.1	1.6
Acenaphthylene	ND	ND	ND	0.036	0.0010									ND	ND		0.000090	-	ND	0.030 J	ND	0.19
Anthracene	ND	0.00013	0.0024	0.58	0.058			-						0.00030	0.00018	ND	0.00027	0.0030	0.00021	0.44	8.2	3.5
Benzo(a)anthracene		0.00036	0.0022	0.69	0.058								-	0.00074	0.00053	0.00013	0.00078	0.0053	0.00048	0.71	13.8	6.9
Benzo(a)pyrene		0.00037	0.0017	0.68	0.050	-								0.00075	0.00054		0.00093		0.00043	0.64	12.8	6.2
Benzo(b)fluoranthene	ND	0.00041	0.0018	0.79	0.062				_					0.00084	0.00065	0.00019	0.0010	0.0056	0.00080	0.92	17.1	8.5
Benzo(g,h,i)perylene		0.00026	0.00098	0.24	0.013									0.00033	0.00019	0.000070	0.00037		0.00013	0.16	3.7	1,5
Benzo(k)fluoranthene			0.00090	0.31	0.027									0.00043		0.000080	0.00043	0.0022	0.00030	0.33	6.8	3.3
Chrysene		0.00040	0.0020	0.84	0.052						_			0.00076	0.00053		0.00078	0.0048	0.00051	0.71	13.2	6.5
Dibenzo(a,h)anthracene		0.000080	ND	0.081	0.0051									ND	0.000070	ND	0.00012	0.00055	ND	0.060	1.3	0.59
Fluoranthene	ND	0.00081	0.0064	1.9	0.15									0.0018	0.0011	0.00027	0.0017		0.00050	1.6	32.6	14.8
Fluorene	ND	ND	0.0013	0.34	0.038									ND	ND	ND	ND	0.0014	ND	0.19	3.6	1.8
Indeno(1,2,3-cd)pyrene	ND	0.00026	0.00099	0.27	0.016	-								0.00036	0.00020	0.000070	0.00039		0.00018	0.18	4.1	1.8
Naphthalene	ND	ND	0.0012	0.41	0.052									ND	ND	ND	ND	0.00093	ND	0.20	2.6	1.2
Phenanthrene	ND	0.00051	0.0080	2.1	0.19									0.0013	0.00066	0.00012	0.0010		0.00017	1.5	27.5	12.6
Pyrene	ND	0.00059	0.0042	1.6	0.12									0.0014	0.00098	0.00027	0.0018	0.0092	0.00058	1.7	27.8	14.2
Total PAHs	0	0.0044	0.0349	11.2	0.921				-					0.009	0.0059	0.0015	0.0097	0.0623	0.0043	9.54	179	85.3
Metals													\Box									
Aluminum														-		-						
Antimony	~~																					
Arsenic	8.0	11.9	12.4	43.8	34.1									6.5	5.7	5.2		9.4	12.5	3.7	33.1	12.6
Barium						1						1				-	-			-		
Beryllium		ŧ		- `							-					1			-			
Cadmium	0.28	0.45	0.44	1.5	1.6	;			1			•		1.3	0.61	0.46		0.95	0.37			
Calcium															-							
Chromium				-	-						-	•		-		-	-					
Cobalt																						
Copper													-									
Iron			-									L=		<u> </u>					-			
Lead					-																	
Magnesium	·								-													
Manganese		-			<u> </u>	-								-					-			
Mercury				-]		
Nickel	_=_	'							·													
Potassium														-				-				
Selenium	_=_													-				-	-			
Silver											_=_			-								
Sodium		-												-			-					
Thallium														-					-			
Vanadium		-								- 1				- 1	-				-			
Zinc										$\overline{}$												

SOIL SAMPLING REALTS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-11-2	C-12-1	C-12-2	C-13-1	C-13-2	C-14-1	C-15-1	C-15-2	C-16-1	C-17-1	C-17-2	C-18-1	C-18-2	C-19-1	C-19-2	C-20-1	C-20-2	C-21-1	C-21-2	C-22-1	C-22-2	C-23-1	C-23-2
Location	C-11	C-12	C-12	C-13	C-13	C-14	C-15	C-15	C-16	C-17	C-17	C-18	C-18	C-19	C-19	C-20	C-20	C-21	C-21	C-22	C-22	C-23	C-23
Date Sampled	4/9/97	4/9/97	4/9/97	4/9/97	4/9/97	4/16/97	4/19/97	4/19/97	4/19/97	4/19/97		4/19/97	4/19/97	4/19/97	4/19/97	4/9/97	4/9/97		4/10/97	4/10/97	4/10/97	4/10/97	4/10/97
Sampling Depth [ft bgs]	8.5	6.5	10	6.5	7.5	4.5	1.5	6.5	6	5.5	8.5	5	10.5	5	7.5	6.5	8.5	6	0	5.5	7.5	7	9.5
VOCs	1												1010		1								
1,1,1-Trichloroethane					-								_				<u> </u>						
1.1.2.2-Tetrachloroethane																					-		
1,1,2-Trichloroethane	-			-	-				-			-	-										
1,1-Dichloroethane	 											-	<u> </u>	-	-					 			
1,1-Dichloroethene	 		-																				
1,2-Dichloroethane	 		 																	 			
1,2-Dichloropropane	 	-	-														-			-			
2-Butanone (MEK)					-	-					=				=	<u> </u>		-		-			-
2-Chloroethyl vinyl ether										-							-			==	 		
2-Hexanone	+=						=										-			 	-		
	 			=											 		+				 = -		
4-Methyl-2-Pentanone	+												 -		-					- -			
Acetone	-						**				_==			<u> </u>		 -	├ -						
Benzene Benzene dieklasserethene			=	=											-	-	-	-		 -			 - -
Bromodichloromethane																	-			==	 		-
Bromoform	ļ- <u></u> -						**										-						
Bromomethane			-													_=_	-	-	_=_			_==-	
Carbon Disulfide	 -										_=_											_=_	-
Carbon Tetrachloride					-													-		-			
Chlorobenzene														_=_			-						
Chloroethane		-				<u></u>	<u></u>					=					<u> </u>						
Chloroform																				-			
Chloromethane		-										-			-		_=_						
cis-1,2-Dichloroethene	<u> </u>				· -										-	-	-			-			
cis-1,3-Dichloropropene			<u> </u>														-			-			
cis/trans1,2-Dichloroethene																				-			
Dibromochloromethane																						-=-	
Dichloromethane (Methylene Chloride)		<u></u>																				·	_=_
Ethyl benzene																							
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene					_=_						·						-						
Toluene																	<u> </u>		<u> </u>	- `			
trans-1,2-dichloroethene																							
trans-1,3-Dichloropropene												-											
Trichloroethene																							·
Trichlorofluoromethane													<u></u>										
Vinyl chloride											<u></u>												
m&p-Xylene																							
o-Xylene																							
Xylenes (unspecified)																		_					-
Total VOCs																-				-			
PCBs																							
Aroclor-1016	-									846			_			-			-				
Aroclor-1221		~-											-			-							
Aroclor-1232																			-	-	-		
Aroclor-1242								,					_				_	_	-				
Aroclor-1248	-								-				-							_			
Aroclor-1254															_	-				_			
Aroclor-1260	-			-									_				-						
Aroclor-1268																						 -	
Total PCB					-																		- -
I CIAL I CD	لستسا												_=										

SOIL SAMPLING K. SOURS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-11-2	C-12-1	C-12-2	C-13-1	C-13-2	C-14-1	C-15-1	C-15-2	C-16-1	C-17-1	C-17-2	C-18-1	C-18-2	C-19-1	C-19-2	C-20-1	C-20-2	C-21-1	C-21-2	C-22-1	C-22-2	C-23-1	C-23-2
Location	C-11	C-12	C-12	C-13	C-13	C-14	C-15	C-15	C-16	C-17	C-17	C-18	C-18	C-19	C-19	C-20	C-20	C-21	C-21	C-22	C-22	C-23	C-23
Date Sampled	4/9/97	4/9/97	4/9/97	4/9/97	4/9/97	4/16/97	4/19/97	4/19/97	4/19/97	4/19/97	4/19/97	4/19/97	4/19/97	4/19/97	4/19/97	4/9/97	4/9/97	4/10/97	4/10/97	4/10/97	4/10/97	4/10/97	4/10/97
Sampling Depth [ft bgs]	8.5	6.5	10	6.5	7.5	4.5	1.5	6.5	6	5.5	8.5	5	10.5	5	7.5	6.5	8.5	6	0	5.5	7.5	7	9.5
PAHs																							
Acenaphthene	ND	0.28	ND	ND	123	0.38	1.6	ND	ND	ND	ND	0.47 J	ND	0.14 J	ND	ND	0.050	0.090	ND	ND	0.44	0.65	0.18
Acenaphthylene	ND	ND	ND	ND	2.4	ND	ND.	ND	ND	ND	0.040	0.11	ND	ND	0.090	0.71 J	0.13						
Anthracene	ND	0.56	ND	0.14 J	50.4	0.50 J	2.1	ND	0.18	ND	ND	1.7	ND	0.33	0.20	0.67 J	0.13 J	0.25 J	ND	0.080	0.81 J	2.2 J	0.45
Benzo(a)anthracene	ND	1.2	ND	0.43	48.6	2.5	7.6	0.31	0.60	1.6	ND	12.7	ND	0.92	0.83	2.5	0.56	1.2	ND	0.23	1.9	6.9	1.0
Benzo(a)pyrene	ND	1.1	ND	0.49	14.6	2.7	8.1	0.35	0.65	1.5	0.13	15.4	ND	0.97	0.94	3.0	0.45	1.4	ND	0.23	1.9	6.7	0.96
Benzo(b)fluoranthene	ND	1.4	0.14 J	0.61	21.3	. 3.5	10.0	0.41	0.80	1.6	0.15	18.4	ND	1.3	1.3	4.4	0.72	2.2	ND	0.26	2.3	10.4	1.5
Benzo(g,h,i)perylene	ND	0.82	ND	0.38	5.2	2.1	3.7	ND	0.25	0.51 3	ND	4,8	ND	0.27	0.21	1.1 J	0.26	1.0 J	ND	0.16	1.1	2.1	0.34 J
Benzo(k)fluoranthene	ND	0.52	ND	0.24	9.9	1.3	4.9	0.19 J	0.36	0.74 J	ND	6.8	ND	0.51	0.54	1.7	0.30	0.74	ND	0.11	0.95 J	4.3 J	0.51 J
Chrysene	ND	1.3	ND	0.61	40.6	2.7	8.0	0.32	0.64	1.7	ND	12.0	ND	0.94	0.88	2.7	0.66	1,5	ND	0.23	2.0	6.9	1.1
Dibenzo(a,h)anthracene	ND	0.22	ND	ND	ND	0.58	1.1	ND	ND	ND	ND	1.5	ND	ND	ND	ND	0.090	0.31	ND	ND	0.32	0.74	0.13
Fluoranthene	ND	2.7	0.26	1.0	316	4.4	15.3	0.60	1.1	2.8	0.20	16.8	ND	1.9	1.4	4.7	1.3	2,2	ND	0.50	4.1	14.8	2.2
Fluorene	ND	0.28	ND	ND	77.9	0.30	1.3	ND	ND	ND	ND	0.39 J	ND	ND	ND	ND	0.050	0.080	ND	ND	0.43	0.61	0.23
Indeno(1,2,3-cd)pyrene	ND	0.73	ND	0.35	5.8	2.1	4.1	0.14 J	0.26	0.48 J	ND	5.4	ND	0.31	0.25	1.3	0.29	1,1	ND	0.15	1.1	2.4	0.39
Naphthalene	ND	0.13 J	ND	ND	1.9	0.16 J	1.3	ND	ND.	ND	ND	ND	ND	ND	ND	ND	0.030	ND	ND	ND	0.41	0.18	0.24 J
Phenanthrene	ND	2.3	0.15 J	0.56	423	2.6	10.2	0.31	0,52	1.5	ND	5.8	ND	1.2	0,67	2.4	0.82	1.1	ND	0.33	3.3	11.3	1,9
Pyrene	ND	2,4	0.24	0.90	237	4.2	13.9	0.61	1.1	3.8	0.21	18.8	ND	1.9	1.5	5.0	1.0	2.1	98.3	0.48 J	3.7	13.9	2.0
Total PAHs	0.	15.9	0.79	5.75	1380	30	93.3	3.24	6.46	16.4	0.69	121	0	10.6	8.73	29.5	6.75	15.4	98.3	2.76	24.8	84.8	13.2
Metals							77.0								- 112				7 - 7 - 7			- 0 1.10	
Aluminum														-				7				_	
Antimony	-																						_
Arsenic	346	5.1	19.4	15,1	9.0							-		-	-		-			-	-		-
Barium												-					-	-					-
Beryllium	-		-										-										
Cadmium		ND	0.45	0.58	ND		••			-			-										
Calcium	-		_	-										-									
Chromium	-														-	-	_			_	·		
Cobalt	-												-						1				
Copper													1	1									
Iron					-					·	-			-1				-	-				
Lead									63.4	48.2	35.2	102	7.7	90.2	.98.6	162	646	2720	92.6	20.6	231	1520	325
Magnesium																							
Manganese	-													-	_	-	-						
Mercury	-			-												0.69	0.34	1.5	0.020	0.060	1.6	2.4	1.8
Nickel	-			-											_								
Potassium	-													-			-			-			
Selenium					_											-		10.0	ND	3.0	2.5		_
Silver																-			-		-		
Sodium			-										-										
Thallium																-		3.5	ND	0.17	0.23		
Vanadium	-	-			-									_					_				
Zinc																-	-						
				·			·····							لسيسبيا	<u> </u>		استنبسا		·				

SOIL SAMPL.... LTS (mg/kg) QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-24-1	C-24-2	C-25-1	C-25-2	C-26-1	C-26-2	C-27-1	C-27-2	C-27-3	C-28-1	C-29-1	C-29-2	C-29A-1	C-29A-2	C-30-1	C-30-2	C-30A-1	C-30A-2	C-30A-3	C-31-1	C-31-2	C-32-1
Location	C-24	C-24	C-25	C-25	C-26	C-26	C-27	C-27	C-27	C-28	C-29	C-29	C-29A	C-29A	C-30	C-30	C-30A	C-30A	C-30A	C-31	C-31	C-32
Date Sampled	4/11/97	4/11/97		4/11/97	4/11/97	4/11/97	4/11/97	4/11/97	4/11/97	4/10/97	4/10/97	4/10/97	4/17/97	4/17/97	4/10/97	4/10/97	4/17/97	4/17/97	4/17/97	4/10/97	4/10/97	4/8/97
Sampling Depth [ft bgs]	6.5	8.5	7	9	7	9	0	5.5	7.5	5	3	6.5	5	7	4.5	6.5	0	5.5	8.5	4.5	6.5	5
VOCs	<u> </u>	0.5					<u> </u>	3.5	7.5			0.5			- 1.2						0.5	
1,1.1-Trichloroethane									-												_	
1,1,2,2-Tetrachloroethane	-		-										 	 _								
1,1,2-Trichloroethane		-								-	-	· =			_							
1.1-Dichloroethane													-									
1.1-Dichloroethene					-	_			-								-		-			
1,2-Dichloroethane														-		au /						
1,2-Dichloropropane						·																
2-Butanone (MEK)			-													_	-			-		
2-Chloroethyl vinyl ether													 					 				
			-							 			 					 -			=	
2-Hexanone	 		 					 				 	 	-								
4-Methyl-2-Pentanone				_=_						 -		 -	 -									. **
Acetone												=										
Benzene	-													 -								
Bromodichloromethane																			 - -			 -
Bromoform			-						=		_=_				-					<u> </u>		
Bromomethane	<u></u>	<u> </u>														 -			 -	<u> </u>		
Carbon Disulfide			<u> </u>																 - -			
Carbon Tetrachloride	 -																					
Chlorobenzene																			 -			
Chloroethane			-																			_=
Chloroform														<u> </u>				 -		<u> </u>		
Chloromethane																		-			**	
cis-1,2-Dichloroethene												-				-						
cis-1,3-Dichloropropene									:					<u> </u>	_=_							
cis/trans1,2-Dichloroethene	<u> </u>											-					-					
Dibromochloromethane							-								-							
Dichloromethane (Methylene Chloride)																	,			<u> </u>		
Ethyl benzene																		-				
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_ND	ND
Tetrachloroethene																					_=_	
Toluene							-		_=_				-									
trans-1,2-dichloroethene											'											
trans-1,3-Dichloropropene													_=_									_=_
Trichloroethene									_=_	-							=_					
Trichlorofluoromethane						_=_						_=_					·	~-				
Vinyl chloride													-									
m&p-Xylene												=	-									
o-Xylene									=				<u> </u>	-								
Xylenes (unspecified)							=		 _													
Total VOCs	<u> </u>				-						شد											
PCBs	<u> </u>												ļ	·		L						
Aroclor-1016				_=_																		_=_
Aroclor-1221									<u></u> -													
Aroclor-1232													-									
Aroclor-1242																L=						
Aroclor-1248	-																					
Aroclor-1254											٠			-								
Aroclor-1260			·												·		· <u>-</u>					
Aroclor-1268										<u> </u>				-				<u> </u>				
Total PCB	. 1	·										. ••	l					1	_	-		

Decision C.24 C.25 C.25 C.26 C.26 C.27 C.27 C.27 C.28 C.29 C.28 C.20 C.20 C.30 C.3	Sample ID	C-24-1	C-24-2	C-25-1	C-25-2	C-26-1	C-26-2	C-27-1	C-27-2	C-27-3	C-28-1	C-29-1	C-29-2	C-29A-1	C-29A-2	C-30-1	C-30-2	C-30A-1	C-30A-2	C-30A-3	C-31-1	C-31-2	C-32-1
Date Sampled																		C-30A	-		-		C-32
Sumplish pepth (fig.) 6.5 8.5 7 9 7 9 0 5.5 7.5 5 3 6.5 5 7 4.5 6.5 0 5.5 8.5 4.5 6.5																							4/8/97
Accomplete		6.5	8.5	7	9	7	9	0	5.5	7.5	5	3	6.5	5	7	4.5	6.5	0	5.5	8.5	4.5	6.5	5
Accomplete																					1		
Recompletylene		ND	1.0	23.4	5.9	0.30	21.4	ND	1.5	ND	ND	0.45	0.12	0.84	2,4	ND	0.16	ND	ND	ND	ND	0.12	56.0
Anthensence ND 14 411 95 072 277 0,060 2-31 ND 0.21 1.5 0.48 2.77 5.0 ND 0.45 ND ND 1.0 ND 0.33 Enzo(a)pmrise ND 2-2 59 13.7 1.0 276 0.22 5.9 ND 0.68 3.4 2.0 4.8 9.3 0.88 1.51 0.050 0.20 4.0 0.16 0.81 Benzo(a)pmrise ND 2-2 59 13.7 1.0 276 0.22 5.9 ND 0.69 3.1 1.9 5.3 8.4 0.080 1.51 0.070 0.19 3.6 0.16 0.75 Benzo(a)pmrise ND 1.4 2.68 6.6 0.47 10.6 0.10 2.51 ND 0.19 0.78 0.52 3.5 2.5 ND ND 0.16 0.5 Benzo(a)pmrise ND 1.4 2.68 6.6 0.47 10.6 0.10 2.51 ND 0.19 0.78 0.52 3.5 2.5 ND ND 0.16 0.22 3.4 0.21 0.56 Benzo(a)pmrise ND 2.4 6.7 15.5 1.0 39.4 0.22 6.6 ND 0.19 0.78 0.52 3.5 2.5 ND ND ND 0.16 0.21 Chystee ND 2.4 6.7 15.5 1.0 39.4 0.22 6.6 ND 0.19 0.78 0.52 3.5 2.5 ND ND ND 0.16 0.21 Chystee ND 3.8 8.4 2.2 0.15 4.1 ND 0.36 ND ND 0.40 2.2 0.70 0.80 Fluorendine ND 5.6 16.0 3.6 3.6 2.1 4.1 ND 0.36 ND ND 0.40 2.2 0.70 0.80 Fluorendine ND 0.78 1.6 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.0 0.2 0.3 0.4 0.2 Fluorendine ND 0.78 1.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.2 0.3 0.0 0.2 0.3 Fluorendine ND 0.78 0.78 0.78 0.3 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.4 0.3																							ND
Benzolaphracene		ND				0.72	_							-		ND	_						94.4
Benzaloflymromethese ND 22 599 137 10 27.6 022 59 ND 0.069 3.1 19 5.3 8.4 0.080 151 0.070 0.19 3.6 0.16 0.73 18	Benzo(a)anthracene	ND	2.5	69.3	15.9	1.1	37.4	0.23	6.5	0.070	0.68 J	3.4	2.0	4.8	9.3	0.080	1.5 J	0.060	0.20 J	4.0	0.16	0.81	101
Beansoft-Differentenees ND 2.5 70.3 17.0 1.2 26.8 0.26 7.1 0.080 0.91 4.4 3.1 5.4 10.5 0.12 2.3 0.090 0.22 3.4 0.21 0.96 1	Benzo(a)pyrene	ND	2.2	59.9	13.7	1.0	27.6	0.22	5.9	ND	0.69	3.1	1.9	5.3	8.4	0.080	1.5 J	0.070	0.19	3.6	0.16	0.73	84.3
Beace/Offbromnehee		ND	2.5	70.3	17.0	1.2	26.8	0.26	7.1	0.080	0.91 J		3.1	5.4	10.5	0.12	2.3	0.090	0.22				98.1
Beace/Offbromnehee	······································	ND	1.4	26.8	6.6	0.47	10.6	0.10		ND	0.19				2.6	ND						_	33.3 J
Chysene		ND	0.96	29.3	17.2	0.42	8.8	0.12	3.6	ND	0.41	1.9	1.3	2.3	4.8	ND	0.92	ND	0.11	1.6	0.10	0.42 J	37.3
Dibeza(A)Janthracee ND 0.38 8.4 2.2 0.15 4.1 ND 0.86 ND ND 0.28 0.22 0.70 0.99 ND 0.14 ND ND 0.60 ND ND						1.0				_					·							_	98.4
Fluorendene ND 5.6 160 36.8 2.5 94.2 0.47 14.5 0.11 1.2 8.9 4.3 9.8 20.1 0.12 3.2 0.10 0.41 5.8 0.29 1.8 Fluorene ND 0.78 18.6 4.4 0.34 4.29 ND 1.1 ND ND 0.57 0.16 1.3 2.4 ND 0.17 ND ND ND ND 0.16 Indeno(1,23-cd)pyrene ND 1.3 30.0 7.4 0.50 11.0 0.11 2.9 ND 0.23 0.91 0.75 3.2 3.1 ND 0.46 ND 0.13 2.0 ND 0.19 Naphthalene ND 0.47 7.0 2.3 ND 21.7 ND ND ND ND ND ND ND N		ND															_	-					10.8
Fluorene ND 0.78 18.6 44 0.34 42.9 ND 1.1 ND ND 0.57 0.16 1.3 2.4 ND 0.17 ND ND ND ND ND 0.16 1 Indexo(1,2,3-cd)yrene ND 1.3 30.0 7.4 0.50 11.0 0.11 2.9 ND 0.23 0.91 0.75 3.2 3.1 ND 0.46 ND 0.13 2.0 ND 0.19 Rephthalene ND 0.47 7.0 2.3 ND 2.17 ND ND ND ND ND 0.18 0.14 0.72 1.1 ND	······································																						245
Indepnol(2,3-ed)pyrece ND 1.3 30,0 7.4 0.50 11,0 0.11 2.9 ND 0.23 0.91 0.75 3.2 3.1 ND 0.46 ND 0.13 2.0 ND 0.19 0.18 Naphthalene ND 0.47 7.0 2.3 ND 21.7 ND ND ND ND ND ND ND N		ND		18.6	4.4	0.34	42.9			ND					2.4	ND				-			56.2
Naphthalene ND 0.47 7.0 2.3 ND 21.7 ND ND ND ND ND 0.18 0.14 0.72 1.1 ND ND ND ND ND ND ND N																							35.8
Pyrene ND 5.0 139 32.1 2.2 96.6 0.43 12.5 0.11 1.3 8.6 4.1 9.2 18.0 0.15 3.3 0.10 0.40 7.7 0.29 2.1 1.5		ND	0.47	7.0	2.3	ND	21.7	ND	ND	ND	ND	0.18	0.14			ND	ND	ND					30.9
Total PAHs 0 33.4 882 219 14.5 653 2.52 78.1 0.37 7.36 46.5 24.5 63.8 117 0.63 17.4 0.54 2.28 38.2 1.5 9.94 1 Metals		ND	5.3	132	32.1	2.5	179	0.28	9.9	ND	0.73	7.6	2.8	9.7	19.1	ND							328
Metals	Pyrene	ND	5.0	139	32.1	2.2	96.6	0.43	12.5	0.11	1.3	8.6	4,1	9.2	18.0	0.15	3.3	0.10	0.40	7.7	0.29	2.1	217
Aluminum		0	33.4	882	219	14.5	653	2.52	78.1	0.37	7.36	46.5	24.5	63.8	117	0.63	17.4	0,54	2.28	38.2	1.5	9.94	1530
Antimony ND ND ND ND ND ND ND 4.2 Arsenic ND ND 4.2 Arsenic 1.9 4.4 2.3 6.1 6.9 67.2 Beryllium 0.38 0.44 0.42 0.52 0.49 0.35 Beryllium ND ND 0.27 ND ND ND ND 0.32	Metals													7.									
Arsenic	Aluminum								**	-	-	-						-	-				
Barium	Antimony							ND	ND	_ND								ND	ND	4.2		**	ND
Beryllium	Arsenic							1.9	4.4	2.3								6.1	6.9	67.2			
Cadmium - - - - ND 0.27 ND - - - - ND ND 0.32 - - Calcium -	Barium		1		-						1		1		-	1	-	-				1	-
Calcium	Beryllium			-	-			0.38	0.44	0.42	-		,					0.52	0.49	0,35		. 4	
Chromium 24.8 34.8 21.4 17.2 20.7 5.7 Cobalt <	Cadmium	•			-		-	ND	0.27	ND		-	-			-		_ND	ND	0.32			
Cobalt - <td>Calcium</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>•</td> <td>1</td> <td></td> <td>•</td> <td>-</td> <td>**</td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	Calcium			-			•	1		•	-	**	1				-		-				
Copper 29,3 30.8 52.5 83.8 41.5 129 37.6 55.0 25.5 25.7 31.8 505 Iron	Chromium							24.8	34.8	21.4			-			1		17,2	20.7	5.7			
Iron -	Cobalt			1				-		-			1	-		-						1	
Lead 20.3 23.9 67.6 77.0 46.4 524 23.4 46.5 20.9 128 418 1360 44.3 336 40.4 356 74.6 66.2 1180 56.4 88.0 Magnesium <td>Copper</td> <td>29.3</td> <td>30.8</td> <td>52.5</td> <td>83.8</td> <td>41.5</td> <td>129_</td> <td>37.6</td> <td>55.0</td> <td>25.5</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>25.7</td> <td>31.8</td> <td>505</td> <td></td> <td>1</td> <td></td>	Copper	29.3	30.8	52.5	83.8	41.5	129_	37.6	55.0	25.5					1			25.7	31.8	505		1	
Magnesium -	Iron		-										-			-			**	-			
Manganese	Lead	20.3	23.9.	67.6	77.0	46.4	524	23.4	46.5	20.9	128	418	1360	44.3	336	40.4	356	74.6	66.2	1180	56.4	88.0	
Mercury 0.050 0.070 0.44 0.18 0.090 4.7 0.080 0.12 0.060 0.47 0.31 12.7 0.070 2.7 0.16 0.16 0.31 0.20 6.0 0.11 0.62 Nickel	Magnesium												**			-							
Nickel 22.0 22.0 20.5	Manganese													-		1			-			1	
Potassium	Mercury	0.050	0.070	0.44	0.18	0.090	4.7	0.080	0.12	0.060	0.47	0.31	12.7	0.070	2.7	0.16	0.16	0.31	0.20	6.0	0.11	0.62	
Selenium ND ND	Nickel							22.0	22.0	20.5					-	-							
Silver ND ND ND	Potassium]		-					-					-				
Sodium	Selenium				<u></u>]			ND	ND	ND													ND
Thallium 0.28 0.18 0.19	Silver							ND	ND	. ND													
Vanadium	Sodium							-															
┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	Thallium					<u> </u>		0.28	0.18	0.19				-	**						-	-	
Zinc 65.1 107 58.3 179 82.0	Vanadium						••				••							44			-		
	Zinc]]		65.1	107	58.3		179	82.0										44.6

SOIL SAMPLING S [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-32-2	C-33-2	C-34-1	C-34-2	C-35-1	C-35-2	C-36-1	C-36-2	C-40-1	C-40-2	C-40-3	C-41-1	C-42-1	C-43-1	C-43-2	C-44-1	C-44-2	C-45-1	C-45-2	C-45-3	C-46-1	C-47-1	C-47-2	C-48-1
Location	C-32	C-33	C-34	C-34	C-35	C-35	C-36	C-36	C-40	C-40	C-40	C-41	C-42	C-43	C-43	C-44	C-44	C-45	C-45	C-45	C-46	C-47	C-47	C-48
Date Sampled	4/8/97	4/8/97	4/8/97	4/8/97	4/8/97	4/8/97	4/19/97	4/19/97	4/8/97	4/8/97	4/8/97	4/8/97	4/8/97	4/8/97	4/8/97	4/14/97	4/14/97	4/14/97	4/14/97	4/14/97	4/14/97	4/14/97	4/14/97	4/4/97
Sampling Depth [ft bgs]	7	8	5.5	7.5	6	7.5	0	8.5	6.5	8.5	9.5	6	9.5	6.5	9.5	5.5	8.5	0	5.5	8.5	6.5	5.5	8.5	7
VOCs	 																							
1,1,1-Trichloroethane	 		-	_												_	-							<u> </u>
1,1,2,2-Tetrachloroethane	-	-	_					-						_					-			-		
./	-	-												_	=	-			-		=	 		<u> </u>
1,1,2-Trichloroethane	 			-							 -			=	=		=	-						
1,1-Dichloroethane	 			-														 -	 					+
1,1-Dichloroethene	 	-		=									-					 -	=			ļ <u> </u>		
1,2-Dichloroethane		-																	——			 - -		
1,2-Dichloropropane																	_=_	 -	 -		 -			
2-Butanone (MEK)	<u> </u>												=						-					
2-Chloroethyl vinyl ether			 -	-									_=_					- -			<u> </u>		-	
2-Hexanone	<u> </u>		_=_	-			·											<u> </u>			<u> </u>			
4-Methyl-2-Pentanone	<u> </u>														<u> </u>								_=_	
Acetone			<u> </u>									<u> </u>						_=_				-		<u> </u>
Benzene													_=_					-				<u> </u>		
Bromodichloromethane			-												**	·				-		-		-
Bromoform				-															-					-
Bromomethane						-										-	_=_		·	-				
Carbon Disulfide																-					-		-	
Carbon Tetrachloride										-					·								1	-
Chlorobenzene									<u>.</u>								1				-	•		-
Chloroethane		1										444	1		1		1	1	-	1	1	1		
Chloroform													1		J	-	1	-						1
Chloromethane				-			-			-		-	1	-	1	-	ı					1		
cis-1,2-Dichloroethene				-		1	, 1						1	-	J	-	1		·					
cis-1,3-Dichloropropene							1						1		•		1	-				-		
cis/trans1,2-Dichloroethene				-		ŧ	1			1	-		1	-	1		1			1				-
Dibromochloromethane						1	1			1	-		1	-			•	1		-			_	
Dichloromethane (Methylene Chloride)						-	1			1	ŧ		1	-	Į		1				-		-	
Ethyl benzene		-				-	+			1	1	-	1	-		1	ł	-						
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND
Tetrachloroethene										4	-				-			_		-			+-	-
Toluene		-				-			}			-			_			,	-		-	·	·	-
trans-1,2-dichloroethene		_			-								-										-	
trans-1,3-Dichloropropene				-		-					-			-	_	-	_		_	-				
Trichloroethene				-						-			-				-							_
Trichlorofluoromethane				-			_		·								-	-	-				_	
Vinyl chloride													-		-	-		-	-					
m&p-Xylene											-		-	-	1									
o-Xylene										1					-									
Xylenes (unspecified)										-			~				-		-			_		
Total VOCs						••													-		-			
PCBs	1						-																	
Aroclor-1016																				-				
Aroclor-1221							-								Ē									
Aroclor-1232																								1
Aroclor-1242																								
Aroclor-1248																								
												=												-
Aroclor-1254																								
Aroclor-1260										_=_					 -		_=_							
Aroclor-1268		•n						AID.							**	-=-						·		
Total PCB	لبحسا						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			L <u></u> _

SOIL SAMPLI, O RESELTS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-32-2	C-33-2	C-34-1	C-34-2	C-35-1	C-35-2	C-36-1	C-36-2	C-40-1	C-40-2	C-40-3	C-41-1	C-42-1	C-43-1	C-43-2	C-44-1	C-44-2	C-45-1	C-45-2	C-45-3	C-46-1	C-47-1	C-47-2	C-48-1
Location	C-32	C-33	C-34	C-34	C-35	C-35	C-36	C-36	C-40	C-40	C-40	C-41	C-42	C-43	C-43	C-44	C-44	C-45	C-45	C-45	C-46	C-47	C-47	C-48
Date Sampled	4/8/97	4/8/97	4/8/97		4/8/97	4/8/97	4/19/97	4/19/97	4/8/97		4/8/97		4/8/97	4/8/97	4/8/97	4/14/97	4/14/97	4/14/97	4/14/97		4/14/97	4/14/97	4/14/97	4/4/97
Sampling Depth [ft bgs]	7	8	5.5	7.5	6	7.5	0	8.5	6.5	8.5	9,5	6	9.5	6.5	9.5	5.5	8.5	0	5.5	8.5	6.5	5.5	8.5	7
PAHs																								
Acenaphthene	60.7	1.1	. 0.37	65,5	ND	26.9	ND	2.5	5.9	8.7	3.1	0.29	ND	1.5	ND	0.24	3.0	ND	24.5	356	442	ND	159	91.3
Acenaphthylene	2.2	ND	ND	6,5	ND	ND	ND	0.54	ND	ND	ND	0.34	ND	ND	ND	ND	ND	ND	ND	ND	122	ND	ND	ND
Anthracene	108	2.5	0.87	203	ND	87.7	0.21	3.2	1.3	4.3	4.3	1.3	0.21	3.0	ND	0.32	0.73	ND	27.9	423	546	0.13	291 J	116
Benzo(a)anthracene	97.3	3.8	2.2	133	0.31	114	0.82	8.6	0.97	1.2	5.1	2.6	0.79	6.4	0.080	0.87 J	4.2	0.14	102	1470	2060	0.58	1290	114
Benzo(a)pyrene	83.7	3.3	2.1	153	0.32	101	0.90	9.5	0.88	0.61	4.7	2.5	0.62	4.9	ND	0.88	8.3	0.15	113	1590	2100	0.62	1390	105
Benzo(b)fluoranthene	98.0	4.8	2.5	185	0.38	142	1.1	12.8	0.95	0.79	6.5	3.3	0.93	5.8	0.090	1.0	7.6	0.19	163	2030	2790	0.76	1750	104
Benzo(g,h,i)perylene	30.2	1.3	0.88	52.7	ND	35.8	0.30	3.0	0.25	ND	1.3	0.67	0.33	1.3	ND	0.66	8.0	0.13	30.0	473	724	0.33	1050_	41.8
Benzo(k)fluoranthene	40.2	1.8	1.1	62.1	0.18	54.3	0.49	4.8	0.32	0.36	2.8	1.3	0.34	2.3	ND	0.41	2.9	0.080	57.2 J	764	1040	0.32	784	45.0
Chrysene	94.8	4.2	2.0	137	0.35	114	0.92	8.4	1.1	1,1	5.1	2.6	0.90	6.6	0.080	0.84 J	4.3	0.15	108	1460	2060	0.57	1550	111
Dibenzo(a,h)anthracene	10.5	0.41	0.29 J	19.9	ND	10.4	ND	1.0	ND	ŊD	0.46	0,22	0.11	0.45	ND	0.18	2,2	ND	12.0	193	291	_ND_	317	13.7
Fluoranthene	241	13.5	4.8	295	0.63	370_	1.9	17.7	4.7	7.3	14.2	5.7	1.5	11.2	0.20	1.8	4.3	0.26	192	2790	3830	0.97	2220	237
Fluorene	62,2	1.5	0.39	63.4	ND	3.3	ND	2.4	3.8	6.4	2,9	0.44	ND	1.4	ND	0.17	ND	ND	19.5	270	340	ND	135	97.6
Indeno(1,2,3-cd)pyrene	33.1	1.4	0.94	57.5	ND	40.7	0.37	3.3	0.23	ND	1.5	0.68	0.36	1.3	ND	0.63	7.2	0.12	37.0	612	903	0.37	1000	44.4
Naphthalene	37.1	3.0	ND_	34.1	ND	16.2	ND	2.0	13.0	11.4	1.4	0.34	ND	0.40	ND	0.17	ND	ND	15.3	215	292	ND	85.9	300 J
Phenanthrene	339	11.5	3.2	386	0.43	276	1.1	14.1	9.9	16.6	16.5	3.8	1.0	16.4	0.13	1.6	2.2	0.12	137	1950	2670	0.63	1440	324
Pyrene	210	10.9	4.2	262	0.62	310	1.8	15.8	3.7	5.5	12.1	5.8	1.5	16.3	0.14	1.7	4.8	0.25	158	2290	3160	0.84	2160	242
Total PAHs	1550	64.9	25.8	2120	3.22	1700	9.82	110	47	64.5	82	31.7	8.62	79.2	0.72	11.5	59.7	1.59	1200	16900	23400	6.12	15600	1990
Metals																								· · · · ·
Aluminum				_=_																				
Antimony	ND	2.8																						
Arsenic																								
Barium																							_=	
Beryllium				_=														-						
Cadmium		1.3								_==								-						
Calcium																								
Chromium			/		-								••		~									
Cobalt	-														_~			:						_=
Copper																								
Iron												~-							-					
Lead		162																						-
Magnesium															_=_									
Manganese																	_=_						_=_	
Mercury																								
Nickel							·																	
Potassium																								
Selenium													 -											
Silver						_=_																-		
Sodium																								
Thallium													_=_											
Vanadium	44.5	141	161	117	 57.4	170												**			**			
Zinc	44.5	141	101	117	57.4	1/0	<u> l</u>									-				لبتبا				

SOIL SAMPLAND & TS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-48-2	C-50-1	C-50-2	C-51-1	C-51-2	C-52-1	C-52-2	C-56-1	C-56-2	C-57-1	C-57-2	C-57-3	C-58-1	C-58-3	C-59-1	C-59-2	C-6-2	C-60-1	C-61-1	C-61-2	C-61-3	C-62-1	C-62-2
Location	C-48	C-50	C-50	C-51	C-51	C-52	C-52	C-56	C-56	C-57	C-57	C-57	C-58	C-58	C-59	C-59	C6	C-60	C-61	C-61	C-61	C-62	C-62
Date Sampled	4/4/97	4/7/97	4/7/97	4/7/97	4/7/97	4/7/97	4/7/97	4/16/97	4/16/97	4/16/97	4/16/97	4/16/97	4/17/97	4/22/97	4/17/97	4/17/97	4/9/97	4/17/97	4/17/97	4/17/97	4/22/97	4/15/97	4/15/97
Sampling Depth [ft bgs]	8	6.5	8.5	6	8.5	5.5	8.5	6	12	7	11.5	0	5.5	0	5.5	9	8.5	6	4.5	7.5	0	2	5.5
VOCs											1112			 									
1,1,1-Trichloroethane				_											_							ND	ND
1,1,2,2-Tetrachloroethane			-										-	 	- -			-				ND	ND
1,1,2-Trichloroethane	=	-	=	 -					=				=	 	 		-	 		-	 	ND	ND
	_																-			 			ND
1,1-Dichloroethane	 -	<u> </u>														·						ND.	ND
1,1-Dichloroethene				=										 -			<u> </u>		-	 		ND	
1,2-Dichloroethane	 												-	 -			-		-	 -	<u> </u>	ND	ND
1,2-Dichloropropane			-	 -				-											-	 		ND	ND
2-Butanone (MEK)	├ -													***							<u> </u>	-	
2-Chloroethyl vinyl ether					-										<u> </u>				-			ND	ND
2-Hexanone													_=_							<u> </u>			
4-Methyl-2-Pentanone															·					<u> </u>			
Acetone																				-			
Benzene																						ND	ND
Bromodichloromethane					-			1		1			-						_			ND	ND
Bromoform								. 														ND	ND
Bromomethane										·						**						. ND	ND
Carbon Disulfide				,													-	-		-	-		-
Carbon Tetrachloride				-						-						-						ND	ND
Chlorobenzene				-											-		-					ND	ND
Chloroethane	 						!									-			-			ND	ND
Chloroform				_														_		-		ND	ND
Chloromethane	 														_							ND	ND
cis-1,2-Dichloroethene	 -			-						-					_								-112
cis-1,3-Dichloropropene												-					-						
cis/trans1,2-Dichloroethene	 													 					=				
	 													 			=	=					ND
Dibromochloromethane											==			 	-			 	 			ND	
Dichloromethane (Methylene Chloride)												<u> </u>		 								ND	ND
Ethyl benzene																		3.77	-			ND	ND
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	-		<u></u>						<u> ·</u>			-									-	ND	ND
Toluene													-								-	ND	ND
trans-1,2-dichloroethene	<u> </u>		_=_							**				-								ND	ND
trans-1,3-Dichloropropene	<u> </u>																						
Trichloroethene			_=_																			ND	ND
Trichlorofluoromethane	<u> </u>			_=_			_=_										-	-		-		ND	ND
Vinyl chloride	<u> </u>															·						ND	ND
m&p-Xylene									-						-								
o-Xylene																-		-	-				
Xylenes (unspecified)			-				_=_		·													ND	ND
Total VOCs					***						-			-	-							00	0
PCBs																							
Aroclor-1016		1	-														-						
Aroclor-1221		-		1						•						-		444	1				
Aroclor-1232				-														-	-	-			
Aroclor-1242	-														-			-			-		
Aroclor-1248	-					~-												_					
Aroclor-1254	-																						
Aroclor-1254	 -																						
Aroclor-1268	 													-									
Total PCB	=														-								ND
TORE FCB			لستتب		لــــــــــــا		لــــــــــــــــــــــــــــــــــــــ											لــــب				ND_	

Sample ID	C-48-2	C-50-1	C-50-2	C-51-1	C-51-2	C-52-1	C-52-2	C-56-1	C-56-2	C-57-1	C-57-2	C-57-3	C-58-1	C-58-3	C-59-1	C-59-2	C-6-2	C-60-1	C-61-1	C-61-2	C-61-3	C-62-1	C-62-2
Location	C-48	C-50	C-50	C-51	C-51	C-52	C-52	C-56	C-56	C-57	C-57	C-57	C-58	C-58	C-59	C-59	C-6	C-60	C-61	C-61	C-61	C-62	C-62
Date Sampled	4/4/97	4/7/97	4/7/97	4/7/97	4/7/97	4/7/97	4/7/97	4/16/97	4/16/97	4/16/97	4/16/97	4/16/97	4/17/97	4/22/97	4/17/97	4/17/97	4/9/97	4/17/97	4/17/97	4/17/97	4/22/97	4/15/97	4/15/97
Sampling Depth [ft bgs]	8	6.5	8.5	6	8.5	5.5	8.5	6	12	7	11.5	0	5.5	0	5.5	9	8.5	6	4.5	7.5	0	2	5.5
PAHs														_									
Acenaphthene	139	0.26	317	0.30	14.3	3.5	1.1	19.1	ND	ND	104	15,2	0.56	0.19 J	0.42	0.85	0.090 J	ND	ND	ND	ND	7.8	4.8
Acenaphthylene	ND	0.15	ND	0.12	ND	ND	0.68	2.9	ND	ND	44.9	0.90	ND	ND	0.77	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	171	0.72	399	0.62	18.2	4.7	3.2	39.6	ND	0.18	180 J	.5.1	1.5	0.33	1.5	1.9	0.090	0.25	0.18 J	ND	ND	13.3	7.9
Benzo(a)anthracene	189	2.5	1660	2.5	70.5	19.3	20.2	70.4	ND	0.67	171	12,2	2.6	0.51	2.8	3.2	0.35	0.81	ND	ND	ND	26.3	16.1
Benzo(a)pyrene	172	2.0	1820	2.7	81.2	21.0	16.9	61.0	ND	0.71	130	6.8	2.5	0.48	2.7	2.8	0.33	0.56	0.68	ND	ND	23.4	14.1
Benzo(b)fluoranthene	190	3.0	2480	3.7	103	27.7	29.8	83.0	ND	1.1	202	10.6	3.0	0.52	3.5	3.3	0.39	0.94	.0.71	ND	ND	27.5	17.7
Benzo(g,h,i)perylene	56.2	0.55	573	0.85	31.5	10.9	10.1	0.73	ND	0.26	45.0	1.6	0.80	0.36	0.88	1.7	0.25	0.47	0.42	ND	ND	8.8	5.3
Benzo(k)fluoranthene	61.5	1.2	985	1.6	46,5	9.8	10.7	31.3	ND	0.47	71.9	4.3 J	1.3	0.24	1.4	1.2	0.19	0.42	0.30	ND	ND	9.7	6.9
Chrysene	174	2.6	1720	2.7	74.1	20.5	23.7	64,1	ND	0.79	154	11.1	2.5	0.53	2.8	3.0	0.35	0.88	0.58	ND	ND	25.9	15.7
Dibenzo(a,h)anthracene	20.4	0.21	240	0.30	12.0	3.6	3.7	6.4	ND	ND	ND	0.58	0.29	ND	0.30	0.49	0.070	0.13 J	ND	ND	ND	2.6	1.8
Fluoranthene	377	6.5	2930	4.8	129	32.7	34.5	146	ND	1.3	512	51.3	5.8	1.3	6.3	7.0	0.65	1.6	1.2	ND	ND	59.5	37.7
Fluorene	144	0.31	255	0.29	11.6	2.9	1.0	19.6	ND	ND	170	14.1	0.61	0.21 J	ND	1.1	0.080 J	ND	ND	ND	ND	6.0	3.5
Indeno(1,2,3-cd)pyrene	61.5	0.64	710	0.91	35.5	12.5	12.3	21.5	ND	0.29	52.7	2:0	0.99	0.32	0.93	1.6	0.23	0.50	0.41	ND	ND	9.7	6.2
Naphthalene	606	0.16	174	0.13	7.0	1.9	0.43	22.1 J	0.37	ND	2830	4.7	0.12	0.99	0.53	1.6	0.050 J	1.3	ND	ND	ND	1.6	1.2
Phenanthrene	545	2.9	1870	2.7	85.5	21.1	11.2	144	ND	0.74	819	43.0	4.7	1.6	5.7	7.3	0.36	1.3	0.73	ND	ND	46.5	29.1
Pyrene	379	5.7	2520	4.7	109	27.9	30.5	141	ND	1.3	465	39.2	5.3	1.2	5.8	6.6	0.62	1.5	1.3	ND	ND	56.6	34.2
Total PAHs	3290	29.3	18700	28.8	829	220	210	873	0.37	7.82	5950	223	32.6	8.76	36.3	43.5	4.1	10.7	6.52	0	0	325	202
Metals																							
Aluminum			 .																				
Antimony		-		•							ND		-	ND			ND		ND	ND	ND	ND	ND
Arsenic				1						5.2	122	1		8.7			4.2		8.6	ND	10.6	2.0	3.2
Barium				-			1			1		••		-				-			1		
Beryllium				-							0.19			0.35			-		0.42	ND	0.45	0.60	0.48
Cadmium					-		1		-		0.40			ND					ND	ND	ND	0.24	0.25
Calcium				1	-		-	-			-			1				**	-	-	1		
Chromium			•	1			*	-		4.0	8.4			30.0	-	<u> </u>		-	29,6	29.6	22.2	15.0	15.4
Cobalt			-	-										-						1	-	-	
Copper				••						13.3	53.3			30.7					57.9	55.9	32.5	15.3	17.7
Iron																							
Lead										13.1	81.2			267			46.1		120	0.27	51.3	44.4	40.0
Magnesium						_=_			·						-							-	
Manganese																-						-	
Mercury	-							-		0.30	0.48			0.38			0.13		0.68	1.3_	0.11	ND	0.040
Nickel										4.6	11.1		_=_	19.7							20.2	23.8	21.7
Potassium																			_=_				
Selenium														ND					 .		ND	ND	ND
Silver						-								ND				_=_	-		ND	ND	ND
Sodium									_=														
Thallium											0.29			0.13				_			0.12	0.10	ND
Vanadium																				-			*-
Zinc]	}]			1	18,9	69.7			138	- 1			-			145	50.5	55.0

SOIL SAMPLING AND IS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

	10.001	10.000	0641	0.440	0.651	0.660	0.661	0.660	10.021	0.00	G 62.2	0.00	0.00	021	070	C 70 1	C 204 0	loar i	0.71.2	0.74.1	6743	C 25 1
Sample ID	C-63-1	C-63-2			C-65-1	C-65-2	C-66-1	C-66-2 C-66	C-67-1	C-67-2			C-69-2		C-7		C-70A-2 C-70A			C-74-1 C-74	C-74-2 C-74	C-75-1 C-75
Location	C-63	C-63	C-64	C-64	C-65	C-65	C-66		C-67	C-67 4/14/97	C-67	C-69	C-69	C-7		C-70		C-71	C-71			
Date Sampled	4/15/97	4/15/97			4/15/97			4/14/97			4/14/97	4/15/97	4/15/97			4/15/97	4/15/97			4/19/97		4/19/97
Sampling Depth [ft bgs]	3	6	4	6	2	3.5	3.5	13	0	4	12	3,5	5	5.5	8.5	1	66	0.5	5	0	5	-
VOCs	 			<u> </u>		ļ	 											 				
1,1,1-Trichloroethane	ND	ND	ND	ND																		
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND										-			 	-				
1,1,2-Trichloroethane	ND	ND	ND	ND										-		_=						
1,1-Dichloroethane	ND	ND	ND	ND	`					 -				-								
1,1-Dichloroethene	ND	ND	ND	ND									 -					-				
1,2-Dichloroethane	ND	ND	ND	ND											-	_=		6-		_=_		
1,2-Dichloropropane	ND	ND	ND	ND		<u> </u>					·				<u> </u>			-				
2-Butanone (MEK)								••							-			-				
2-Chloroethyl vinyl ether	ND	ND	ND_	ND										-								
2-Hexanone	 										•											
4-Methyl-2-Pentanone	 									-		-	-									
Acetone		<u></u>												-								
Benzene	ND	ND	ND	ND				<u></u>				=	-		-			-				
Bromodichloromethane	ND	ND	ND	ND										-								
Bromoform	ND_	ND	ND	ND								-					_=_					
Bromomethane	ND	ND	ND	ND											-					-		
Carbon Disulfide			-															-				
Carbon Tetrachloride	ND ·	ND	ND	ND					. 												<u>'-</u>	
Chlorobenzene	ND	ND	ND	ND.										=								
Chloroethane	ND	ND	ND	ND					-							i						
Chloroform	ND	ND	ND	ND				**								-						
Chloromethane	ND	ND	ND	ND.							-					· ••						
cis-1,2-Dichloroethene	-									-		<u> </u>		-	, 			-				
cis-1,3-Dichloropropene	 										_=_			-				. ==			·	
cis/trans1,2-Dichloroethene	 																·			-		
Dibromochloromethane	ND	ND	ND ·	ND								. •									· - _	
Dichloromethane (Methylene Chloride)	ND	ND	ND	ND																		
Ethyl benzene	ND	ND	ND	ND							_=_					<u> </u>						
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND			ND_	ND	ND	ND	_ND_	ND	ND
Tetrachloroethene	ND	ND	ND	ND										-	-			-				
Toluene	ND	ND	ND	ND																	_=_	
trans-1,2-dichloroethene	ND	ND	ND	ND																		
trans-1,3-Dichloropropene														-		_=_						
Trichloroethene	ND	ND	ND_	ND											-	_=_						
Trichlorofluoromethane	ND	ND	ND	ND					<u> </u>													_=_
Vinyl chloride	ND	ND	ND	ND														-				
m&p-Xylene													-									
o-Xylene											*-			-								
Xylenes (unspecified)	ND	ND	ND	ND																	_=_	
Total VOCs	0	0	0	0										-			***					
PCBs													·									
Aroclor-1016					-								,	_	-			_=_				
Aroclor-1221		_									•						-					
Aroclor-1232								-		-				-			-			1		
Aroclor-1242																						
Aroclor-1248														-	-	-		-		_	_	
Aroclor-1254							-				-		-	-								
Aroclor-1260							_			-			-									
Aroclor-1268							_			_	_	~-			-							
Total PCB	ND	ND	ND	ND	ND							1		-								

Sample ID	C-63-1	C-63-2	C-64-1	C-64-2	C-65-1	C-65-2	C-66-1	C-66-2	C-67-1	C-67-2	C-67-3	C-69-1	C-69-2	C-7-1	C-7-2	C-70-1	C-70A-2	C-71-1	C-71-2	C-74-1	C-74-2	C-75-1
Location	C-63	C-63	C-64	C-64	C-65	C-65	C-66	C-66	C-67	C-67	C-67	C-69	C-69	C-7	C-7	C-70	C-70A	C-71	C-71	C-74	C-74	C-75
Date Sampled	4/15/97	4/15/97	4/15/97	4/15/97	4/15/97	4/14/97	4/14/97	4/14/97	4/14/97	4/14/97	4/14/97	4/15/97	4/15/97	4/9/97	4/9/97	4/15/97	4/15/97	4/15/97	4/15/97	4/19/97	4/19/97	4/19/97
Sampling Depth [ft bgs]	3	6	4	6	2	3.5	3.5	13	0	4	12	3.5	5	5.5	8.5	1	6	0.5	5	0	5	0
PAHs	 								-	· · · · · · · · · · · · · · · · · · ·												
Acenaphthene	1.1	ND	ND	ND	12.2	1.1	0.31	ND	ND	2.7	ND	ND	ND	_	_	0.080	ND	17.8	1.9	0.16 J	ND	0.45
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	16.3	ND	ND	ND	ND	ND			ND	ND	ND	ND	0.24	ND	0.28
Anthracene	3.3	ND	ND	ND	23.5	2,2	0.63	30.8	ND	5.6	2.3	0.28	ND	-		0.19	ND	24.5	2.1	0.39	0.43	0.32
Benzo(a)anthracene	8.4	ND	0.45	0.90	41.3	6.6	1.7	27.2	0.10	13.2	5.8	1.5	0.22		-	0.86	ND	33.8	3.8	1.4	1.1	2.7
Benzo(a)pyrene	6.9	ND	0.67	1.0	37.1	5.4	1.6	22.8	0.12	13.1	6.3	1.3	0.21	_		0.84	ND	26.8	2.8	1.6	0.82	2.7
Benzo(b)fluoranthene	8.1	ND	0.86	1.2	46.8	7.1	2.0	27.5	0.14	17.1	8.0	1.7	0.25		_	1.2	ND	27.7	2.7	2.2	1.2	3.6
Benzo(g,h.i)perylene	2.3	ND	ND	0.98	12.5	1.4	0.62	3.9	0.090	3.1	4.4	0.92	0.16			0.22	ND	7.7	1.7	0.39	ND	0.78
Benzo(k)fluoranthene	3.4	ND	0.49	0.59	19.9	3.3	0.76	12.8	0.060	7.8	3.3	0.73	0.10		-	0.48	ND	10.5	1.2	0.97	0.66 J	1.9
Chrysene	8.2	ND	0.59	1.1	40.6	5.3	1.8	22.9	0.11	13.1	5.9	1.5	0.23			0.86	ND	36.0	3.7	1.5	1.1	2.9
Dibenzo(a,h)anthracene	0.97	ND	ND	ND	4.2	0.52	0.20	1.6	ND	1.2	1.2	0.28	ND	-	_	0.090	ND	3.2	0.48	0.14 J	ND	0.28
Fluoranthene	14.4	ND	0.73	1.2	99.3	11.3	3.5	66.6	ND	28.3	11.6	2.7	0.36	=		1.4	ND	83.3	8.9	2.6	2.5	5.4
	1.2	ND	ND	ND	12.3	1.0	0.30	18.5	ND	2.7	ND	0.21	ND	=		0.080	ND	34.3	3.2	0.16 J	ND	0.46
Fluorene Indeno(1,2,3-cd)pyrene	2.9	ND	ND	0.87	13.5	1.6	0.63	5.0	0.080	3.5	4.5	0.21	0.15	<u> </u>		0.080	ND	8.6	1.5	0.163	0.15 J	0.48
Naphthalene	1.5	ND	ND	ND	3.5	0.29	ND	18.4	ND	0.91	ND	ND	ND	-		ND	ND	41.9	1.3	0.16 J	ND	0.87
Phenanthrene	13.1	ND	ND	ND	83.0	7.7	3.4	84.8	0.10	19.5	7.5	0.74	0.11	=		0.72	ND	149	11.1	1.5	1.6	1.6
	15.0	ND	0.80	1.2	93.5	10.4	3.5	58.5	ND	22.5	10.1	3.2	0.11	-		1.6	ND	93.8	9.8	3.0	2.4	5.4
Pyrene Total PAHs	90.9	0	4.59	9.05	543	65.2	21	418	0.8	154	70.8	15.9	2.2	=		8.84	0	599	56.2	16.9	12	29.9
Metals	70.5		7.35	7.05	343	03.2		7,0	0.8	1.54	70.5	13.7	2.2			0.04	- <u>`</u> -	333	30.2	10.9	12	25.5
Aluminum																						
Antimony	ND	ND	ND	ND					ND		ND			2.7	ND			-		ND	ND	ND
Arsenic	6.8	7.4	5.4	176					2,6		7.0	-			-112					5.9	2.2	8.9
Barium															_						2.2	- 8.5
Beryllium	0.080	0.13	0.080	0.23					0.42		0.14	-								0.50	0.47	0.36
Cadmium	ND	ND	0.29	ND					ND		0.33	-		ND	ND					0.23	ND	0.27
Calcium			0.27					-	.,,,,,		-0.55				110					0.23	ND	0.27
Chromium	6.7	9.2	12.2	9.8					23,4		14.3									20.5	22.1	20.2
Cobalt	0.7	3,2	12.2	7.0					23.4		14.5					 -				20.5	22.1	20.2
	29.6	26.4	90.4	154					36.8		66.3		-							129	30.1	50.2
Copper	29.0	20.4	70.4	134					30.6		00.3			-	-					129		30.2
Iron	23.8	15.9	55.4	120					36.6		88.4			77.8	189	_=_				112	74.3	
Magnesium	23.8	13.9	33.4	120					30.0	 -	88.4		-	11.8	189					112		114
Magnesium	 							_==							-						-	——
Manganese	0.080	0.050	0.15	0.23					0.070		0.21			0.090	0.31	_=				0.35		0.46
Mercury Nickel	15.3	12.3	17.0	13.0					19.8	 -	13.7	=		0.090	0.31					21.3	0.51 20.4	
	15.5	12.3	17.0	13.0					19.8		13./				=					21.3	20.4	19,3
Potassium	ND	ND.	ND	ND		-		=	ND		ND ·	=			_					ND	ND	- ND
Selenium	ND ND	ND	ND	ND					ND		ND									ND ND	ND ND	
Silver		- עא	ND -	- UND							ND				-				-			ND
Sodium	- ND	ND.	ND	0.29					0.22		ND									0.16	024	
Thallium	עע	ND	עאו						<u> </u>								-			0.16	0.24	ND
Vanadium	27.6	27.0	05.0	147					93.5		57.2				-						72.0	100
Zinc	37.6	27.9	85.8	14/					93.5		5/2				ا ا	_=_				239	73.0	177.

Sample ID	C-75-2	C-75-3	C-76-1	C-76-2	C-76-3	C-77-1	C-77-2	C-77-3	C-77-4	C-78-1	C-78-2	C-78-3	C-79-1	C-79-2	C-79-3	C-8-1	C-8-2	C-80-1	C-80-2	C-81-1	C-81-2	C-81-3
Location	C-75	C-75	C-76	C-76	C-76	C-77	C-77	C-77	C-77	C-78	C-78	C-78	C-79	C-79	C-79	C-8	C-8	C-80	C-80	C-81	C-81	C-81
Date Sampled	4/19/97	4/19/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/17/97	4/17/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97
Sampling Depth [ft bgs]	3.5	13.5	0	3.5	9	0	3.5	12.5	15.5	0	3.5	11.5	0	4.5	6.5	4.5	10.5	0	4.5	0	3.5	8.5
VOCs																			1,12	Ť		- <u>5.5</u>
1,1,1-Trichloroethane				-															-			
1,1,2,2-Tetrachloroethane															_							
1,1,2-Trichloroethane												-										
1,1-Dichloroethane																						
1,1-Dichloroethene									-													
1,2-Dichloroethane	-																		-			
1,2-Dichloropropane																-		_			-	
2-Butanone (MEK)												-				-					-	
2-Chloroethyl vinyl ether															_			_	_			
2-Hexanone																						
4-Methyl-2-Pentanone															_							
Acetone																				-		
Benzene															- -					-	=	-
Bromodichloromethane																						
Bromoform			==															-		-		-
Bromomethane																						- -
Carbon Disulfide										-												
Carbon Tetrachloride																	-					
Chlorobenzene												-		=								
Chloroethane								=														
Chloroform	==										-											
Chloromethane																						<u> </u>
									= -		-											
cis-1,2-Dichloroethene																						-
cis-1,3-Dichloropropene														-						, 		
cis/trans1,2-Dichloroethene											'											
Dibromochloromethane				-				_=_								_=_				<u></u>		_=_
Dichloromethane (Methylene Chloride)																						
Ethyl benzene	ND									ND	ND	ND	ND	ND						-	L.	
Hexachloroethane		ND									ND -				ND			ND	ND	ND	ND	ND
Tetrachloroethene	_=_														-	_=_			-			
Toluene														-	-							
trans-1,2-dichloroethene													<u> </u>									
trans-1,3-Dichloropropene																_=_	_=_	-				
Trichloroethene		_=_									_=_			<u> </u>			**	-				
Trichlorofluoromethane				<u></u> .							**		_==_									
Vinyl chloride					_=						·											
m&p-Xylene				 												_=_						
o-Xylene														-	-							
Xylenes (unspecified) Total VOCs																						
PCBs																				_=_		
																						-
Aroclor-1016																	_=	-			-	
Aroclor-1221 Aroclor-1232																						
					••					·					-		_=_		_=_	_=_	=	
Aroclor-1242 Aroclor-1248																	_=_	-				
Aroclor-1254 Aroclor-1260																						
							·						_=_				_=_	_=				
Aroclor-1268	_=_		_=_			·					_=_			_=_		<u></u> _	· -		_=			_=_
Total PCB												 .		لــــــــــــــــــــــــــــــــــــــ								

SOIL SAMPLIL. TS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-75-2	C-75-3	C-76-1	C-76-2	C-76-3	C-77-1	C-77-2	C-77-3	C-77-4	C-78-1	C-78-2	C-78-3	C-79-1	C-79-2	C-79-3	C-8-1	C-8-2	C-80-1	C-80-2	C-81-1	C-81-2	C-81-3
Location	C-75	C-75	C-76	C-76	C-76	C-77	C-77	C-77	C-77	C-78	C-78	C-78	C-79	C-79	C-79	C-8	C-8	C-80	C-80	C-81	C-81	C-81
Date Sampled	4/19/97	4/19/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/17/97	4/17/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97
Sampling Depth [ft bgs]	3.5	13.5	0	. 3.5	9	0	3.5	12.5	15.5	0	3.5	11.5	0	4.5	6.5	4.5	10.5	0	4.5	0	3.5	8.5
PAHs																						
Acenaphthene	2.4	ND				-				0.25	2.9	3.8	0.13	1.4	4.9			ND	ND	ND	0.74	1.2
Acenaphthylene	0.18 J	ND								0.18 J	0.18 J	ND	ND	ND	0.79	_		ND	ND	0.27	ND	ND
Anthracene	0.99	ND	0.94	4.1	3.0	0.91	ND	17.0	47.2	0.49	2.5	8.3	0.38	1.6	3.6			0.13 J	0.48	0.53	1.2	1.6
Benzo(a)anthracene	2.7	ND	2.7	5.1	9.1	2.9	0.44	61.8	177	1.7	5.9	25.0	1.4	7.4	3.7			0.64	2.5	2.0	2.2	2.9
Benzo(a)pyrene	2.7	ND	2.6	4.5	9.0	3.3	0.46	66.1	191	1.9	5.2	27.0	1.4	9.5	3.3		-	0.67	2.9	2.1	2.3	2.6
Benzo(b)fluoranthene	3.6	ND	3.2	5.4	11.7	4.4	0.57	93.6	296	2.6	7.6	42.0	2.3	14.2	5.1			1.0	4.5	3.5	3.3	3.5
Benzo(g,h,i)perylene	0.78	ND	1.2	1.4	2.5	1.1	0.13 J	25.5	58.8	0.64	1.3	7.1	0.19	1.8	0.58	-		ND	0.57	0.38	0,32	0.64
Benzo(k)fluoranthene	1.9	ND	1.2	2.5	4.6	1.8	0.25	38.3	90.0	1.1	2.7	15.5	0.91	6.9	2.4		-	0.48	2,2	1.3	1.7	1.7
Chrysene	2.9	ND	2.7	4.8	8.3	3.0	0.43	64.2	191	1.9	5.6	25.1	1.4	8.9	4.2		-	0.75	2.7	2.1	2.4	2.7
Dibenzo(a,h)anthracene	0.28	ND	0.62	0.47	0.76	0.35	ND	8.6	22.4	0.21	0.45	2.6	0.080	0.68	0.22 J	_	-	ND	0.22 J	0.13 J	ND	0.24 J
Fluoranthene	5.4	ND	4.6	12.8	17.1	5.3	0.70	112	324	3.1	13.9	48.6	0.31	11.7	10.6	_		1.3	4.2	3.5	5.8	7.2
Fluorene	2.0	ND			-	-	-			0.20 J	1.8	3.5	0.11 J	0.72	5.1			ND	0.23 J	0.19	0.78	1.1
Indeno(1,2,3-cd)pyrene	0.87	ND	1.1	1.6	2.7	1.2	0.15 J	26.5	69.8	0.71	1.5	8.5	0.27	2.2	0.72			0.13 J	0.73	0.45	0.41	0.78
Naphthalene	2.1	ND			-	~		-		0.13 J	2.6	1.2	ND	6.4	20.1	_	-	ND	0.19 J	0.14 J	0.61	1.5
Phenanthrene	3.4	ND	3.4	15.9	10.1	3.0	0.32	86.2	239	1.8	15.7	35.3	1.8	7.3	16.8			0.76	2.3	2.0	5.3	7.0
Pyrene	5.4	ND	5.9	12.0	17.7	5.8	0.85	104	300	3.6	14.8	49.4	3.3	14.3	10.5	-		1.6	4.5	4.5	5.6	6.4
Total PAHs	37.4	. 0	30.2	70.6	96.5	33.2	4.3	704	2010	20,5	84.7	303	14	94.9	92.7		-	7.44	28.1	23.1	32.6	41
Metals										· ·												
Aluminum						••					·		_	. 1	-		*				-	
Antimony	ND.	ND	ND	ND	ND	ND	3.8	ND	5.2	6.6	ND	ND	3.3	42.7	52.0	ND	ND	ND	46.5	ND	3.3	ND
Arsenic	4.5	7.1	5.5	6.6	4.1	11.7	5.0	91.9	106	5,7	4.1	17.8	4.3	2900	3370	1	1	3.5	684	7.8	6.8	5.2
Barium			**		-	-			1	-	1		-	-				-	•	1		
Beryllium	0.41	0.12	0.45	0.43	0.42	0.47	0.40	0.28	0.30	0.45	0.32	0.51	0.38	ND	0.16	1	1	0.48	ND	0.38	0.44	0.39
Cadmium	0.81	ND	ND	0.66	0.58	0.56	ND	1.4	2.8	ND	ND	0.51	ND	1.1	2.7	ND	1.7	ND	ND	ND_	ND	0.91
Calcium				4	 .	-			1		-	-				1	1			**		
Chromium	23.7	2.8	24.6	17.8	26.8	24.7	157	14.3	24.0	26.5	51.4	39.6	80.4	17.3	47.9	1	1	19.7	69.9	24.5	19.9	18.6
Cobalt	-		1							-	-			100	••	•			1			
Copper	31.4	26.7	40.4	31.7	38.0	56.7	88.8	480	655	68.7	48.4	58.0	63.0	563	1240	1	-	25.5	854	53.0	29.9	42,6
iron										4-0						-	-	-	,			
Lead	361	ND	154	238	270	139	65.9	585	1020	110	59.8	324	80.3	6520	8210	62.2	62.1	81.0	5710	269	1130	361
Magnesium											<u> </u>						-			-		
Manganese																						
Mercury	2.3	0.030	0.21	0.92	1.4	0.35	0.10	1.4	2.1	23.9	0.12	3.1	0.11	43.7	87.6			0.080	33.3	0.30	0.73	1.5
Nickel	14.9	7.8	20.4	10.7	16.3	21.6	50.1	21.6	17.8	ND	26.0	37.2	32.1	15.3	44.9	-		20,1	57.5	23.2	21.4	14.4
Potassium .			-											·			.		-	-		-
Selenium	ND	ND	ND	ND	ND	ND	2.6	5.0	6.7	ND	ND	3.3	ND	34.6	. 103			ND	88.3	ND	ND	ND
Silver	0.66	ND	ND	ND	ND	ND	ND	0.93	1.5	ND	ND	0.85	ND	19.8	7.1		-	ND	2.6	ND	ND	ND
Sodium												-				-				-		
Thallium	ND	ND	МD	ND	ND	ND	0.11	1.5	2.0	ND	0.11	0.22	0.14	15.6	12.9		-	0.15	2.3	0.13	0.19	ND
Vanadium			-													_						
Zinc	314	11.5	162	365	219	207	107	619	654	141	114	137	86.1	316	1040	1		82.8	173	182	93.8	427

SOIL SAMPLING RESEARCH S [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-82-1	C-82-2	C-82-3	C-83-1	C-83-2	C-83-3	C-84-1	C-84-2	C-84A-3	C-85-1	C-85-2	C-85-3	C-86-1	C-86-2	C-86-3	C-87-1	C-87-2	C-87-3	C-88-1	C-88-2	C-88-3	C-89-1
Location	C-82	C-82	C-82	C-83	C-83	C-83	C-84	C-84	C-84A	C-85	C-85	C-85	C-86	C-86	C-86	C-87	C-87	C-87	C-88	C-88	C-88	C-89
Date Sampled	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/21/97	4/21/97	4/21/97	4/21/97	4/21/97	4/21/97	4/22/97	4/22/97	4/22/97	4/22/97	4/22/97	4/22/97	4/22/97
Sampling Depth [ft bgs]	0	3	14.5	0	3	5	0	3	6	0	4	12	0	4	13	0	2.5	11.5	0	4.5	11.5	0
VOCs																						
1,1,1-Trichloroethane				-					_				_	_				-	-			
1,1,2,2-Tetrachloroethane							-					-		-			-	*			-	
1,1,2-Trichloroethane														-	-		-		-			
1,1-Dichloroethane								-				-				_		-				
1,1-Dichloroethene															-		-					
1,2-Dichloroethane													• _		-		-			-		
														- -	- -							=
1,2-Dichloropropane	_=_												 -		 							 -
2-Butanone (MEK)														 -								
2-Chloroethyl vinyl ether																					-	
2-Hexanone																						
4-Methyl-2-Pentanone													,	-	-			-				-
Acetone														-								
Benzene														-						-		
Bromodichloromethane																						
Bromoform -																-						
Bromomethane									-					_=_								
Carbon Disulfide					١								-	<u> </u>								
Carbon Tetrachloride																						
Chlorobenzene		1			-				-							1		1			-	
Chloroethane	-	-		1	-			1	-	1			1	*		-		1				
Chloroform									-				-			-	-				•	
Chloromethane		-		1		1			-				-			-						
cis-1,2-Dichloroethene		-													-			-	-		-	
cis-1,3-Dichloropropene	-			1		•	` 			-		-	_	_		-			-			
cis/trans1,2-Dichloroethene		_									-					-						
Dibromochloromethane						-								-	-	-					·	
Dichloromethane (Methylene Chloride)				-								-			-							
Ethyl benzene	-																					
Hexachloroethane	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND :	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene																			-			
Toluene															-							
trans-1,2-dichloroethene																						
trans-1,3-Dichloropropene										-												
Trichloroethene																						
Trichlorofluoromethane					-																	
																				-		
Vinyl chloride																						
m&p-Xylene		=															<u> </u>	_=_				
o-Xylene				-																		
Xylenes (unspecified)					_=_																	
Total VOCs																			-			
PCBs																						
Aroclor-1016																					_=_	
Aroclor-1221		. ==																				
Aroclor-1232												·										
Aroclor-1242																-						
Aroclor-1248																	1					
Aroclor-1254	-						-							-								
Aroclor-1260			-														-					
Aroclor-1268				·					_								-			_		
Total PCB														-					-			
[* v 1 v v v v v v v v v	لــــب		لحستسسا	نــــــــــــــــــــــــــــــــــــــ		للتلل				ليستنسب		لستسا		نـــتــــــــــــــــــــــــــــــــــ	لبستسيا			I		لستنسا		

Sample ID	C-82-1	C-82-2	C-82-3	C-83-1	C-83-2	C-83-3	C-84-1	C-84-2	C-84A-3	C-85-1	C-85-2	C-85-3	C-86-1	C-86-2	C-86-3	C-87-1	C-87-2	C-87-3	C-88-1	C-88-2	C-88-3	C-89-1
Location	C-82	C-82	C-82	C-83	C-83	C-83	C-84	C-84	C-84A	C-85	C-85	C-85	C-86	C-86	C-86	C-87	C-87	C-87	C-88	C-88	C-88	C-89
Date Sampled	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/20/97	4/21/97	4/21/97	4/21/97	4/21/97	4/21/97	4/21/97	4/22/97	4/22/97	4/22/97	4/22/97	4/22/97	4/22/97	4/22/97
Sampling Depth [ft bgs]	0	3	14.5	. 0	3	5	0	3	6	0	4	12	0	4	13	0	2.5	11.5	0	4.5	11.5	0
PAHs																						
Acenaphthene	0.43	1.9	ND	ND	0.65	5.9	0.33	24.3	ND	0.38	16.6	0.32	22.1	4.9	ND	0.65	3.6	2.4	0.30	1.3	ND	ND
Acenaphthylene	0.42	ND	ND	ND	0.39	ND	0.19 J	ND	0.14 J	0.17 J	ND	ND	ND	ND	ND	0.33	0.30 J	ND	ND	0.45	ND	ND
Anthracene	1.1	3.0	0.77	ND	2.0	9.3	0.96	62.6	0.30	1.0	25.5	0.99	53.4	7.6	0.31	2.0	5.1	5.5	0.68	3.4	0.16 J	ND
Benzo(a)anthracene	3.3	5.8	1.8	0.45	5.6	16.9	3.3	76.1	0.74	3.4	40.3	2.3	98.3	14.1	1.4	7.2	7.2	11.3 J	2.3	14.1	0.65	0.23
Benzo(a)pyrene	3.6	5,2	1.8	0.43	5.0	15.2	3.4	53.6	0.71	3.5	33.2	2.2	86.5	13.2	1.3	7.8	6.9	8.9	2.3	14.9	0.69	0.26
Benzo(b)fluoranthene	5.1	7.1	2.6	0.62	6.9	17.4	4.1	64.8	0.72	4.2	43.0	2.5	108	16.5	1.7	11.0	8.0	10.2	2,8	18.5	0.91	0.26
Benzo(g,h,i)perylene	1.2	1.5	ND	ND	1.3	8.5	1.1	17.0	0.19 J	1.4 J	12.0	0.83	22.4	3.5	_0.37	2.2	1.6	6.1	0.93	6.1	0.19 J	0.11
Benzo(k)fluoranthene	2.0	3.2	1.2	0.29	3.2	7.7	1.8	28.1	0.36	1.9	17.0	1.2	46.4	7.9	0.83	4.3	3.8	5,0	1.1 J	6.5	0.41	0.13
Chrysene	3.4	5.4	1.8	0.46	5.2	16.2	3.5	67.5	0.78	3.4	38.8	2.2	93.3	13.5	1.3	6.9	7.1	10.4	2.3	13.5	0.67	0.25
Dibenzo(a,h)anthracene	0,36 J	0.50 J	ND	ND	0.49	2.4	0.41	6.4	ND	0.46	4.3	0.28 J	5.7	1.3	0.14 J	0.69	0.61	1.9	0.32	2.0	ND	ND
Fluoranthene	6.1	14.6	3.8	0.80	12.5	38.4	6.0	164	1.4	6.5	96.7	4.8	211	33.8	2.6	12.7	16.7	23.7	4.3	25.7	1.2	0.42
Fluorene	0.34	2.0	ND	ND .	0.77	4.5	0.30	31.7	ND	0.34	17.2	0.32	23.7	4.6	ND	0.55	4.1	2.4	0.22 J	1.1	ND	ND
Indeno(1,2,3-cd)pyrene	1.2	1.6	ND	ND	1.6	8.3	1.3	17.6	0.22	1.4	12.8	0.91	28.9	4.0	0.43	2.4	2.0	6.3	1.0	7.0	0.21 J	0.11
Naphthalene	0.29	1.5	ND	.ND	ND	ND	ND	22.5	ND	ND	ND	ND	10.0	3.2	ND	ND	3.0	1.1	ND	0.37 J	ND	ND
Phenanthrene	3.1	12.2	3.5	0.47	7.4	32.7	3.3	188	1.0	3.6	92.3	3.2	161	27.3	1.4	6.5	18.3	23.0	2.3	11.1	0.58	0.21
Pyrene	6.4	12.7	3.8	0.90	11.6	33.0	6.1	145	1.8	5.8	74.5	4.3	184	28.3	2.6	12.5	14.7	21.6	4.1	25.4	1.2	0.46
Total PAHs	38.3	78	21	4.42	64.7	216	36.1	969	8.41	37.5	524	26.3	1150	184	14.2	77.7	103	140	25	151	6.88	2.44
Metals																						
Aluminum																	_					
Antimony	ND	2.7	ND	2.8	ND	ND	ND	3.7	ND	ND	ND	ND	ND	2.5	ND	ND	ND	5.5	ND	ND	ND	ND
Arsenic	10.3	6.9	17.6	2.5	5.1	14.1	6.9	8.1	5.7	4.7	4.5	9.4	27.5	10.9	6.2	6.3	6.2	86.8	2.3	18.1	25.7	5.8
Barium		1	-							-												
Beryllium	0.37	0.51	ND	0.30	0.33	0.41	0.41	0.77	0.55	0.43	0.34	0.64	0.39	0.32	0.42	0.56	0.42	ND	0.46	0.26	0.49	0,29
Cadmium	ND	0.96	ND	ND	0.68	0.76	0.73	0.96	ND	0.47	0.98	0.68	1.2	1.7	0.41	0.65	ND	1.2	0.39	5.3	ND	ND
Calcium		1				-			-				-				-					
Chromium	26.5	24.3	12.0	37.9	19.1	25.5	28.4	34.0	24.6	20.2	21.6	18.7	27.8	42.8	16.7	27.7	12.8	27.5	25.8	14.2	11.1	17.8
Cobalt																			_			-
Copper	61.1	50.9	71.5	29.9	563	69.0	70.1	84.4	22.4	41.1	45.1	431	88.5	70.7	128	74.5	512	804	52.1	130	138	19.3
Iron						-		-				-										
Lead	127	575	146	64.7	295	243	232	376	39.5	141	236	528	339	300	517	231	97.5	1430	90.3	154	332	39.5
Magnesium				-					-				-		-			-	_			
Manganese				1					'					'								
Mercury	0.37	0.39	0.060	0.30	0.38	0.30	0.51	0.58	0.060	0.23	0.31	1.2	0.020	0.52	1.0	0.33	0.41	1.8	0.18	0.72	1.0	0.24
Nickel	23.4	12.7	14.9	28.2	19.3	26.5	35.8	34.0	25.4	17.1	20.7	24.9	24.8	36.9	20.3	28.1	13.8	45.9	22.0	37.5	15.7	17.2
Potassium																						_
Selenium	ND	3.5	ND	11.3	ND	ND	ND	ND														
Silver	ND																					
Sodium				-								-				-						
Thallium	0.10	ND	0.55	0.22	0.11	0.17	0.10	0.12	0.11	0.12	ND	ND	ND	ND	0.15	0.10	ND	0.12	0.24	0.22	0.17	0.11
Vanadium													-									
Zinc	226	473	35.2	124	397	370	330	588	83.2	214	332	321	400	534	277	359	91.9	280	228	219	80.3	61.8
			كتتب														· **/				00.5	

SOIL SAMPLING ABOUTS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Location	C-89	C-89-3 C-89 4/22/97 13.5	C-90-1 C-90 4/23/97	C-90-2 C-90 4/23/97	C-90	C-91-1 C-91	C-91-2 C-91	C-91-3 C-91	C-92-1 C-92	C-92-2 C-92	C-92-3 C-92	C-93	C-93-2 C-93	C-93-3 C-93	C-94-1 C-94			C-95-1	C-95-2	C-95-3 C-95	C-96-1	C-96-2
Date Sampled 4/ Sampling Depth [ft bgs] VOCs 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	122/97	4/22/97													U-74 I	C-94	C-94	C-95	C-95	L-93	C-96	C-96
Sampling Depth [ft bgs] VOCs 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane				4143171	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97
VOCs 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane			0	6	13	0	3	13.5	0	3.5	10.5	0	3.5	16	0	3.5	15	0	4.5	11.5	0	3.5
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane																						
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	1												-			_						 _
1,1,2-Trichloroethane 1,1-Dichloroethane							-														_	
1,1-Dichloroethane																			-			
			_					_				-							-			-
41.1-Dichorochene												_	-	-				-				-
1,2-Dichloroethane				*-										_					-		-	-
1,2-Dichloropropane												-										
2-Butanone (MEK)																			_			
2-Chloroethyl vinyl ether															-						<u>.</u>	_
2-Hexanone												-								*-	-	
4-Methyl-2-Pentanone							<u> </u>		-						-				_		-	
Acetone				-										_				-				
Benzene												-		-	_			-			_	
Bromodichloromethane	-									-									_	_		
Bromoform	_																			-		
Bromomethane						••								**								
Carbon Disulfide										••				**			-					
Carbon Tetrachloride													-									
Chlorobenzene																		-			_	
Chloroethane					-																	
Chloroform																	_	-			_	
Chloromethane														-								
cis-1,2-Dichloroethene	-												_	_				-	_			_
cis-1,3-Dichloropropene				1_								_										
cis/trans1,2-Dichloroethene																						
Dibromochloromethane	-																_	•		-		_
Dichloromethane (Methylene Chloride)																						
Ethyl benzene																					-	
	ND	ND			_					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	``_ _			-																		
Toluene	_				_										_						_	
trans-1,2-dichloroethene																		·				
trans-1,3-Dichloropropene																						
Trichloroethene												-										
Trichlorofluoromethane					-							-						-	_			
Vinyl chloride								••				+										
m&p-Xylene																				-	-	
o-Xylene																						
Xylenes (unspecified)										_					_							-
Total VOCs																			_			
PCBs .						, ,																
Aroclor-1016					-								_				_					
Aroclor-1221	_													_			-		_			
Aroclor-1232														-								
Aroclor-1242			_																			
Aroclor-1248														_ :	-							
Aroclor-1254	_		_												_		_					
Aroclor-1260																					-	
Aroclor-1268			_										_		_				_			=
Total PCB						·									_							

SOIL SAMPLING ACCOUNTS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	C-89-2	C-89-3	C-90-1	C-90-2	C-90-3	C-91-1	C-91-2	C-91-3	C-92-1	C-92-2	C-92-3	C-93-1	C-93-2	C-93-3	C-94-1	C-94-2	C-94-3	C-95-1	C-95-2	C-95-3	C-96-1	C-96-2
Location	C-89	. C-89	C-90	C-90	C-90	C-91	C-91	C-91	C-92	C-92	C-92	C-93	C-93	C-93	C-94	C-94	C-94	C-95	C-95	C-95	C-96	C-96
Date Sampled	4/22/97	4/22/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/23/97	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97
Sampling Depth [ft bgs]	4	13.5	0	6	13	0	3	13.5	0	3.5	10.5	0	3.5	16	0	3.5	. 15	0	4.5	11.5	0	3.5
PAHs																						
Acenaphthene	ND	1.1								1.4	ND	ND	0.48	ND	0.30	3,2	ND	ND	1.3	3.3	0.45	1.8
Acenaphthylene	0.60	ND								0.14 J	ND	ND	0.16 J	ND	0.26	0.65	ND	ND	0.16 J	ND	ND	0.51
Anthracene	ND	2.5	ND	0.53	19.9	4.0	1.3	0.69	4.4	2.5	ND	ND	1.2	ND	1.0	4.4	ND	ND	1.5	5.0	0.66	3.7 J
Benzo(a)anthracene	0.62	4.8	0.14 J	1.5	26.9	11.1	3.0	2.0	10.4	6.7	0.32	0.27	3.0	ND	4.6	8.9	0.16 J	ND	3.9	7.3	1.1	7.9
Benzo(a)pyrene	1.2	4.4	0.13 J	0.14	24.8	12.4	3.1	2.4	10.0	6.9	0.31	0.28	2.8	ND	4.4	8.6	0.16 J	ND	4.0	5.4	1.0	6.8
Benzo(b)fluoranthene	1.4	5.2	0.14 J	2.2	26.4	12.5	4.0	3.4	11.3	.10.9	0.38	0.30	3.8	ND	5.3	12,1	0.17 J	ND	4.7	8.1	1.2	10.3
Benzo(g,h,i)perylene	0.45	1.8	ND	0.47	17.0	6.8	0.85	0.84	4.6	1.8	0.21 3	0.21 J	0.67	ND	1.6	2.0	0.12	ND	2.9	1.2	0.74	1.6
Benzo(k)fluoranthene	0.56	2.1	ND	0.75	10.6	6.4	1.8	1.2	5.3	3.9	0.16 J	0.16 J	1.7	ND	2.1	4.9	ND	ND	1.9 J	3.7	0.49	3.7
Chrysene	0.76	4.8	ND	1.5	25.3	11.7	3.1	2.1	9.8	7.5	0.36	0.29	2.8	ND	4.6	9.4	0.15 J	ND.	4.0	6.5	1.1	7.6
Dibenzo(a,h)anthracene	ND	0.56	ND	0.17 Ј	3.8	2.1	0.30	0,28	1.4	0.56	ND	ND	0,22	ND	0.56	0.76	ND	ND:	0.77	0.51	0.19 J	0.63
Fluoranthene	1.5	10.7	0.19 J	3.2	69.2	19.2	6.6	3.7	19.6	20.1	0.62	0.45	6.6	0.23 J	7.4	22,5	0.24	0.15 J	7.9	19.2	2.5	20.6
Fluorene	0.54	1.3						-		1.6	ND	ND	0.52	ND	0.27	3.3	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0,53	2.0	ND	0.57	15.6	7.0	0.97	0.96	4.8	2.1	0.19 J	0.19 J	0.83	ND	1.8	2.4	0.13 J	ND	2.6	1.7	0.71	2.0
Naphthalene	ND	1.0								0.15 J	ND	ND	0.33	ND	ND	1.9	ND	ND	1.3	ND	0.14 J	0.51
Phenanthrene	ND	9.7	. ND	2.2	79.8	10.9	4.7	1.5	14.1	15.1	0.37	0.22	4.6	0.17 J	3.3	21.1	ND	ND	6.2	17.1	2.5	15.8
Pyrene	2.6	9.9	0.19 J	2.9	63.5	16.9	6.6	3.5	17.0	18.3	0.58	0.43	6.4	0.22 J	6.9	21.8	0.23	0.15 J	7.1	14.6	2.2	20.4
Total PAHs	10.7	61.8	0.79	16.2	383	121	36.3	22.5	113	99.6	3,5	2.8	36.1	0.62	44.5	128	1.36	0.3	50.1	93.7	15.1	104
Metals																						
Aluminum						~-								•				-				***
Antimony	9.8	ND	2.9	ND	8.1	ND	ND	ND	ND	ND	2.8	ND	ND	3.3	ND .	ND	ND	ND	ND	ND	ND	4.9
Arsenic	1.8	3.1	1.3	3.9	1560	4.0	7.0	29.4	3.8	4.1	27.6	3.7	5.1	881	4.5	6.7	24.9	3.8	5.0	6.4	5.5	210
Barium																		-				
Beryllium	0.48	0.21	0.43	0.37	0.27	0.77	0.42	565	0.72	0.26	0.56	0.40	0.33	0.50	0.44	0,58	0.64	0.43	0,39	0.13	0.46	0.23
Cadmium	26.7	ND	ND	0.35	0.56	ND	7.7	0.32	0.43	0.68	0.71	ND	0.44	3.5	0.34	2,5	0.32	ND	0.45	0.25	ND	0.26
Calcium											-								-			
Chromium	105	9.1	40.5	18.4	32.2	23.2	42.4	24.8	29.8	19.8	202	21.0	25.0	85.8	21.0	32.3	23.0	34.8	34.1	8.6	47.2	37.4
Cobalt														_=_					-			
Copper	105	34.6	37.0_	34.3	532	150	95.8	42.8	138	47.2	41.6	25.6	46.1	325	36.8	89.2	21.7	30.7	70.0	49.1	41.2	171
Iron				_=_			_ - -						_=					<u> </u>				
Lead	221	102	18.5	59.3	6300	206	327	116	195	438	1130	41.5	139	724	96.5	382	57.6	35.1	93.2	86.8	134	1.7
Magnesium	_=_			_=									_=_	_=_								
Manganese	_=_		_=_		_=_		_=							_=	_=_							<u></u> :
Mercury	0.50	0.68	0.060	0.15	34.7	0.23	1.1	0.54	0.24	0.32	0.41	0.17	0.39	2.9	0.22	0.42	0.10	0.070	0.26	0.18	0.17	4.1
Nickel	26.0	27.2	27.7	18.4	22.0	37.8	57.8	36.0	34.4	28.5	22.7	21.1	26.2	183_	20.0	40.8	64.1	30.4	23.8	5.7	45.9	17.5
Potassium	_=_		_=	_=					_=				_=_	_=-	_=_				_=_			
Selenium	ND	4.1	ND	ND	38.4	ND	ND	ND	ND	ND ND	ND	ND	ND	4.5	ND	ND	ND	ND	ND	ND	ND	3.6
Silver	ND	ND	ND	ND	2.8	ND	ND	ND	ND	_ND	ND	ND	ND	0.89	ND	ND	ND_	ND	ND	ND	ND	2.9
Sodium				_=_			_=_						_=									
Thallium	ND	0.56	0.32	ND	8.7	0.10	0.11	0.22	0.13	ND	0,13	0.22	0.13	2.3	0.16	ND	0.13	0.26	0,22	0.20	0.32	6.5
Vanadium														_=_								
Zinc	0.70	59.9	102	80.6	304	897	609	120	815	288	227	66.5	166	1650	172	362	99.3	77.8	143	84.6	118	174

Sample ID	C-96-3	C-97-1	C-97-2	C-98-1	C-98-2	C-98-3	HD-1A-1	HD-1A-2	HD-1B-1	HD-1B-2	HD-2A-1	HD-2A-2	HD-2B-1	HD-2B-2	HD-2C-1	HD-2C-2	HD-2D-1	HD-2D-2	HD-2E-1	HD-2E-2
Location	C-96	C-97	C-97	C-98	C-98	C-98	HD-1A	HD-1A	HD-1B	HD-1B	HD-2A	HD-2A	HD-2B	HD-2B	HD-2C	HD-2C	HD-2D	HD-2D	HD-2E	HD-2E
Date Sampled	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97	3/18/97	3/18/97	3/19/97	3/19/97	4/7/97	4/7/97	4/2/97	4/2/97	4/7/97	4/7/97	4/2/97	4/2/97	4/2/97	4/2/97
Sampling Depth [ft bgs]	13	0	6	0	3.5	7.5	5.5	13	5.5	14.5	5.5	13.5	7.5	13.5	5.5	14.5	7.5	12.5	7.5	12.5
VOCs		-		<u>`</u> _	5.5		3.3			14.5		12.2	,,,,	122	3,3	1.415		12		
		 										 _								
1,1,1-Trichloroethane																				
1,1,2,2-Tetrachloroethane							-					 								
1,1,2-Trichloroethane																				
1,1-Dichloroethane							-													
1,1-Dichloroethene																				_=_
1,2-Dichloroethane				^-				**				**-							**	
1,2-Dichloropropane							-						-			<u> </u>				
2-Butanone (MEK)							••						-				**			
2-Chloroethyl vinyl ether							2			<u> </u>										
2-Hexanone										**										
4-Methyl-2-Pentanone										-										
Acetone	1																			
Benzene		-								-					~			1.		
Bromodichloromethane	1	-			-						=0				1	-	**			
Bromoform	1	_														-	1	•		
Bromomethane				·				<u></u>											-	-
Carbon Disulfide	-				-		-			-	••	**			-					
Carbon Tetrachloride	-	_				_				-	-			-	·	-	-			-
Chlorobenzene	-											-	-	-		-				
Chloroethane													_			_		*		
Chloroform								-				-	_				·		-	
Chloromethane												-		-			-			
cis-1,2-Dichloroethene														-						
cis-1,3-Dichloropropene											<u></u>		_			-			_	
cis/trans1,2-Dichloroethene				_											-					
Dibromochloromethane										·									_	-
Dichloromethane (Methylene Chloride)																				
Ethyl benzene			-													-				-
Hexachloroethane	ND	ND	ND	ND	ND	ND											_			
Tetrachloroethene		-142																		
Toluene																				
trans-1,2-dichloroethene											- -		 -							
									-				 	=		-				
trans-1,3-Dichloropropene	=			_=																
Trichloroethene														 -						
Trichlorofluoromethane																				
Vinyl chloride											 ·	<u> </u>	-		-					
m&p-Xylene												_=_			-					
o-Xylene			-																	
Xylenes (unspecified)		_ 						•-												
Total VOCs																	<u> </u>			
PCBs												 	<u> </u>							
Arocior-1016																				
Aroclor-1221																				-
Aroclor-1232			 .													-				
Aroclor-1242																				
Aroctor-1248				_				-	1			-		-	-					
Aroclor-1254													2			-				-
Aroclor-1260													-							
Aroclor-1268					·			-	_				-							
Total PCB	-						ND	ND	ND	ND	9.4	ND	1.8	ND	0.60	ND	ND	ND	ND	ND
I v Out I CD		1		لستنسا		لستسا		_ر.،		170					V.VV	ערו	ערי	עויג	190	. עריי

Sample ID	C-96-3	C-97-1	C-97-2	C-98-1	C-98-2	C-98-3	HD-1A-1	HD-14-2	HD-1R-1	HD-18-2	HD-24-1	HD-2A-2	HD-28-1	HD-2B-2	HD-2C-1	HD-2C-2	HD-2D-1	HD-2D-2	HD-2E-1	HD-2R-2
Location	C-96	C-97	C-97	C-98	C-98	C-98	HD-1A	HD-1A	HD-1B	HD-1B	HD-2A	HD-2A	HD-2B	HD-2B	HD-2C	HD-2C	HD-2D	HD-2D	HD-2B	HD-2E
Date Sampled	4/24/97	4/24/97	4/24/97		4/24/97	4/24/97	3/18/97	3/18/97	3/19/97	3/19/97	4/7/97	4/7/97	4/2/97	4/2/97	4/7/97	4/7/97	4/2/97	4/2/97	4/2/97	4/2/97
Sampling Depth [ft bgs]	13	0	6	0	3.5	7.5	5.5	13	5.5	14.5	-5.5	13.5	7.5	13.5	5.5	14.5	7.5	12.5	7.5	12.5
PAHs					5.5	7.2		 	3.5	17.5	3.5	75.5	7.2	10.0	3.5	14.5	1.5	12.5		12.5
	ND	ND	1.2	0.56	0.51	632						-					 	 		-
Acenaphthene	ND	ND	0.25	ND	ND	208		}				t					=	}		
Acenaphthylene	0.14 J	ND	2.5	1.1	11.9	1260		 -									 			
Anthracene	0.143	0.44	4.7	3.3	21.4	1090						 								-
Benzo(a)anthracene			4.7	3.4	19.1	819													 	 -= -
Benzo(a)pyrene	0.43	0.45	6.5			971		 									 -	- -		
Benzo(b)fluoranthene	0.56	0.63		4.6	27.2							**								-
Benzo(g,h,i)perylene	0.37	ND	1.1	1.2	5.6	210														
Benzo(k)fluoranthene	0.25	0.26	2.7	2.0	9.3	419								-					-	
Chrysene	0.46	0.43	4.8	3.5	21.7	1020		<u> </u>	-		<u> </u>									
Dibenzo(a,h)anthracene	ND_	ND	0.41	0.39 J	1.9	74.9					_=_		 		=			<u> </u>		
Pluoranthene	0.85	0.82	12.2	7.0	47.9	3110						-								
Fluorene	ND	ND	ND	0.37 J	4.4	807											<u> </u>		_=_	
Indeno(1,2,3-cd)pyrene	0.36	0.14 J	1.3	1.3	6.5	233														<u> </u>
Naphthalene	ND	· ND	0.55	ND	1.5	124														
Phenanthrene	0.61	0.42	10,3	4.3	34.8	3680						-				1				
Pyrene	0.79	0.83	11.5	6.3	43.3	2600	-		1	-					1	1				
Total PAHs	5.24	4.42	64.6	39.3	257	17300									-	-				
Metals																				
Aluminum		-									_	-	_	_	-	-				_
Antimony	ND	ND	ND	ND	ND	ND							-		-					-
Arsenic	173	6.2	16.5	5.5	33.9	111						_			-	-		-		
Barium			-					-				-	-	-	-	-		-	-	-
Beryllium	0.10	0.49	0.29	0.46	0.23	ND						-			-			-		
Cadmium	ND	ND	0.27	ND	0.70	1.9							-	**						
Calcium										_		-	-		_	·			-	
Chromium	8.8	23.3	21.4	25.5	16.9	28.5						_							-	
Cobalt		-										-								
Copper	87.0	36.9	42.8	51.2	77.2	363									-		-			
Iron																	-			
Lead	381	82.7	76.1	408	279	1120														
Magnesium		02.7	70.1		/					-										
Manganese	-							-												
Mercury	1.8	0.19	0.29	0.28	1.7	2.6											- -			
Nickel	4.3	33.6	15.5	21.6	15.6	34.7											-	-	- -	-
Potassium		33.0		21.0	13.0							-					=		-	-
Selenium	ND	ND	ND	ND	ND	4.8						-						-		-
Silver	ND	ND	ND	ND	ND	0.88 J		-		-										
		עע	ND	ND -	ND	0.863														
Sodium	1.6	0.12	0.14	ND	0.19	0.71														
Thallium											=_		-			_=_				
Vanadium	25.0		107	162	1.77	422					<u> </u>									
Zinc	35.0	83.7	107	157	167	433						_				- '	l			

SOIL SAMPLING AS ITS [mg/kg] QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	HD-2F-1	HD-2F-2	HD-3C-1	HD-3C-2	HD-3D-1	HD-3D-2	HF-2-1	HF-2-2	HF-3-1	HF-3-2	HF-4-1	HF-4-2	HF-5-1	HF-5-2	LB-1A-1	LB-1A-2	LB-1B-1	LB-1B-2	LB-1C-1	LB-1C-2
Location	HD-2F	HD-2F	HD-3C	HD-3C	HD-3D	HD-3D	HF-2	HF-2	HF-3	HF-3	HF-4	HF-4	HF-5	HF-5	LB-1A	LB-1A	LB-1B	LB-1B	LB-1C	LB-1C
Date Sampled	4/3/97	4/3/97	4/2/97	4/2/97	4/2/97	4/2/97	3/4/97	3/4/97	3/4/97	3/4/97	3/6/97	3/6/97	3/4/97	3/4/97	3/17/97	3/17/97	3/17/97	3/17/97	3/17/97	3/17/97
Sampling Depth [ft bgs]	8	13.5	5.5	13	7.5	13.5	0	7.5	9	13.5	8	13.5	10.5	14.5	5	9	5	9	5	9
VOCs										20.0										
1,1,1-Trichloroethane						_			_				_	~				 .		
1,1,2,2-Tetrachloroethane																	-			
1,1,2-Trichloroethane													_							-
1,1-Dichloroethane												_	_		_	_				
1,1-Dichloroethene													_				-			
1,2-Dichloroethane				-								_				-				
1,2-Dichloropropane													_	-						7
2-Butanone (MEK)			_														÷-			
2-Chloroethyl vinyl ether					**	_	**		-				-				-			
2-Hexanone																		-	-	
4-Methyl-2-Pentanone						-				_			-	~	_				-	
Acetone									_			-	-	~						_
Benzene									-		-		-		-					
Bromodichloromethane	-		-										-						-	
Bromoform				-			-		-				_		_		_			-
Bromomethane														-	-				-	
Carbon Disulfide													-						-	
Carbon Tetrachioride	-		-									-				eń.			-	
Chlorobenzene												-		-				-		
Chloroethane			-					9,4	**											
Chloroform				**	1												••			
Chloromethane				-			-	-	1			1	-	-		-	1		1	
cis-1,2-Dichloroethene			1	-	•		-	***	-	-		-	-	1	-		1	-	-	
cis-1,3-Dichloropropene			1				••							-						
cis/trans1,2-Dichloroethene									-			-		į						
Dibromochloromethane				-			1		1			-								
Dichloromethane (Methylene Chloride)					1		-							~					-	
Ethyl benzene	-				-				1			**		1					_	
Hexachloroethane		-								-		-	-	,					-	
Tetrachloroethene	-		-			-				-		-		-						
Toluene							**					1			-		**			
trans-1,2-dichloroethene												-	-		1	-	-	-		
trans-1,3-Dichloropropene												•	-		-		+		~	
Trichloroethene												-						-		
Trichlorofluoromethane																				
Vinyl chloride						-											<u> </u>			
m&p-Xylene															_~					
o-Xylene							_=_				-									
Xylenes (unspecified)														~~						
Total VOCs				<u> </u>							<u> </u>								_=	
PCBs			L	i																
Aroclor-1016																			_=_	
Aroclor-1221																				
Aroclor-1232			<u></u>															_=_	_=-	
Aroclor-1242												-								
Aroclor-1248													<u> </u>					(
Aroclor-1254																			_=_	
Aroclor-1260											**									_=_
Aroclor-1268												-				-			_=	
Total PCB	ND	ND	0.61	54.3	6810	963					لبت									

Sample ID	HD-2F-1	HD-2F-2	HD-3C-1	HD-3C-2	HD-3D-1	HD-3D-2	HF-2-1	HF-2-2	HF-3-1	HF-3-2	HF-4-1	HF-4-2	HF-5-1	HF-5-2	LB-1A-1	LB-1A-2	LB-1B-1	LB-1B-2	LB-1C-1	LB-1C-2
Location	HD-2F	HD-2F	HD-3C	HD-3C	HD-3D	HD-3D	HF-2	HF-2	HF-3	HF-3	HF-4	HF-4	HF-5	HF-5	LB-1A	LB-1A	LB-1B	LB-1B	LB-1C	LB-1C
Date Sampled	4/3/97	4/3/97	4/2/97	4/2/97	4/2/97	4/2/97	3/4/97	3/4/97	3/4/97	3/4/97	3/6/97	3/6/97	3/4/97	3/4/97	3/17/97	3/17/97	3/17/97	3/17/97	3/17/97	3/17/97
Sampling Depth [ft bgs]	8	. 13.5	5.5	13	7.5	13.5	0	7.5	9	13.5	8	13.5	10.5	14.5	5	9	5	9	5	9
PAHs															-					
Acenaphthene					~-	**	0.00020	0.00035	0.00040	0.00022	ND	ND	ND	0.00024	0.0021	0.00020	ND	ND	ND	ND
Acenaphthylene			-				0.00039		ND	ND	ND	ND	0.00018	0.068	0.00029	ND	ND	ND	ND	ND
Anthracene		_	-	-			0.00067	0.0011	0.00094	0.00066	ND	ND	0.00043	0.00088	0.0046	0.00048	ND	ND	0.00022	ND
Benzo(a)anthracene							0.0035	0.0019		0.00073	ND	ND	0.00092	0.00058	0.015	0.0015	ND	ND	0.0015	ND
Benzo(a)pyrene						-	0.0036	0.0019	0.00091	0.00059	ND	0.000070	0.00080	0.00026	0.015	0.0015	ND	ND	0.0017	ND
Benzo(b)fluoranthene							0.0055	0.0027	0.0014	0.00078	ND	0.000070	0.0016	0.00053	0.022	0.0020	ND	ND	0.0024	ND
Benzo(g,h,i)perylene							0.0010	0.00057	0.00025	0.00016	ND	ND	0.00019	0.000060	0.0025	0.00028	ND	ND	0.00033	ND
Benzo(k)fluoranthene		_					0.0022	0.0011	0.00053	0.00042	ND	ND	0.00056	0.00021	0.0081	0.00095	ND	ND	0.00097	ND
Chrysene							0.0034	0.0018		0.00072	ND	ND	0.00094	0.00052	0.014	0.0015	ND	ND	0.0016	ND
Dibenzo(a,h)anthracene								0.00019	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND
Fluoranthene			-				0.0057	0.0046	0.0034	0.0019	0.000090	0.00012	0.0015	0.0021	0.030	0.0032	ND	ND	0.0027	ND
Fluorene					÷-		0.00017		0.00055		ND	ND	ND	0.00034	0.0018	0.00015	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	-							0.00065		0.00020	ND	ND			0.0034	0.00037	ND	ND	0.00042	ND
Naphthalene			_				ND	ND	ND	ND	ND	ND	0.00012	0.00024	0.0011	ND	ND -	ND	ND	ND
Phenanthrene				<u></u>			0.0021	0.0032	0.0031	0.0018	0.000070	ND	0.00069	0,0020	0.016	0.0018	ND	ND	0.00096	ND
Pyrene		_					0.0058	0.0039	0.0027	0.0015	0.000080	0.00011	0.0015	0.0015	0.025	0.0027	ND	ND	0.0025	ND
Total PAHs	-						0.0358	0.0247	0.0168	0.01	0.00024	0.00037	0.0097	0.0772	0.162	0.0167	0	0	0.0153	0
Metals									•											
Aluminum												-		-	-		-	-		
Antimony							ND	ND		ND	ND	· ND	ND	ND	-			_		
Arsenic							7.2	7.0	6.6	3.8	4.9	5.2	10.7	4.4	ND	ND	ND	ND		ND
Barium]																-	-	
Beryllium			,			-	0.39	0.44	0.70	0.49	0.71	0.62	451	0.32			-			
Cadmium		[1.0	0.32	0.59	0.70	ND	ND	ND	ND	ND	ND	1.3	0.46	ND	ND
Calcium							-						-	-					-	
Chromium					٠ 🚜		19.1	13.5	21.0	16.9	36.2	32.6	9.4	7.3						
Cobalt																				
Copper		<u>.</u>			·		85.8	109	137	116	42.1	31.7	71.5	48.5	-		••			
Iron					=-									-			**			
Lead			-				148	855	151	424	136	124	489	251			1	**		
Magnesium										-	-							-		
Manganese											-									
Mercury				**			0.44	0.43	2.2	3.3	0.26	0.53	0.65	0.21	-	-				
Nickel							26.0	16.7	16.6	23.0	38.7	28.0	13.9	8.7	ND	ND	ND	ND	ND	ND
Potassium								-		•••					**		-			
Selenium							ND	ND	ND	ND	ND	ND	2.4	ND					~-	
Silver							ND	ND	ND	ND	ND	ND	ND	ND		-			,	
Sodium									-											
Thallium							ND	0.23	0.39	0.12	0.34	0.16	0.20	0.080						
Vanadium							-							-			24			
Zinc							153	120	86.6	538	301	169	71.1	17.4				-		

Sample ID	LB-2A	LB-2B	LB-2C	I.R-3A-1	LB-3A-2	I.R-3R-1	LB-3B-2	LB-3C-1	LR-3C-2	I.R-3D-1	1.R-3D-2	LD-1-1	I D-1-2	LHA-1A-1	LHA-1A-2	LHA-1B-1	LHA-1B-2	LHA-1C-1	LHA-1C-2
Location	LB-2A	LB-2B	LB-2C	LB-3A	LB-3A	LB-3B	LB-3B	LB-3C	LB-3C	LB-3D	LB-3D	LD-1	LD-1	LHA-1A	LHA-1A	LHA-1B	LHA-1B	LHA-1C	LHA-1C
Date Sampled		2/26/97	2/26/97	2/28/97	2/28/97	2/28/97	2/28/97	2/27/97	2/27/97	2/27/97	2/27/97	3/5/97	3/5/97	3/5/97	3/5/97	4/2/97	4/2/97	4/2/97	4/2/97
Sampling Depth [ft bgs]	1	1	1	9	13.5	6	11.5	9	14.5	9	15.5	5.5	11.5	0.5	7.5	2	7	2.5	7.5
VOCs					12.0				7.15		100	3.5			,,,,,				
1,1,1-Trichloroethane						-						ND.	ND			-			
1,1,2,2-Tetrachloroethane										-		ND	ND						
1,1,2-Trichloroethane									==			ND	ND						
							==												
1,1-Dichloroethane							-					ND	ND						
1,1-Dichloroethene												ND	ND						
1,2-Dichloroethane											-	ND	ND		••				
1,2-Dichloropropane												ND	ND					**	
2-Butanone (MEK)																			
2-Chloroethyl vinyl ether												ND	ND						
2-Hexanone																	-		
4-Methyl-2-Pentanone																			-
Acetone														-	-	-			
Benzene	-		-	-						-		ND	ND						
Bromodichloromethane			-					-	-	1		ND	ND		-	-		-	
Bromoform			-									ND	ND	-		1			
Bromomethane												ND	ND:	-		-			-
Carbon Disulfide										1				-		-		-	_
Carbon Tetrachloride		-										ND	ND		-			-	
Chlorobenzene				-	-			**				ND	ND	-				-	
Chloroethane												ND	ND	-				-	
Chloroform	-							-			_	ND	ND		_			-	
Chloromethane							1			-	**	ND	ND			'	_		
cis-1,2-Dichloroethene		_					-										_		
cis-1,3-Dichloropropene								•-					-					•	
cis/trans1,2-Dichloroethene												_			4.				
Dibromochloromethane												ND	ND						
Dichloromethane (Methylene Chloride)		_								-		ND	ND						
Ethyl benzene												ND	ND						
Hexachloroethane			_								-0	ND	ND						
Tetrachioroethene												ND	ND						
Toluene												ND	ND						
													ND						
trans-1,2-dichloroethene												ND_							
trans-1,3-Dichloropropene																			
Trichloroethene			~			_ _						ND_	ND		-				
Trichlorofluoromethane				_=_								ND	ND						
Vinyl chloride	<u> </u>											ND	ND	-					
m&p-Xylene																			
o-Xylene																			
Xylenes (unspecified)												ND	ND						
Total VOCs								· -				0	0						
PCBs	 						•												
Aroclor-1016																	-	٠-	••
Aroclor-1221													·						
Aroclor-1232								-					-		_				
Aroclor-1242							••									·			
Aroclor-1248						·	-												
Aroclor-1254													-						
Aroclor-1260													-	-					
Aroclor-1268				-															
Total PCB								ND .	ND	ND	ND	ND	ND	ND	4.3	ND	ND	ND	ND
[* ^ * ^]	للستسلا								.,,,,	110	ערו	770	1117	110	7.3	1110	1717	עודו	עוו

Sample ID	LB-2A	LB-2B	LB-2C	LB-3A-1	I B-34-2	I B-3B-1	I R-3R-2	I R-3C-1	I.B.3C-2	I R-3D-1	LR-3D-2	I D-1-1	LD-1-2	LHA-1A-1	LHA-1A-2	LHA-1B-1	1.HA-1B-2	LHA-1C-1	LHA-1C-2
Location	LB-2A	LB-2B		LB-3A	LB-3A	LB-3B	LB-3B	LB-3C	LB-3C	LB-3D	LB-3D	LD-1	LD-1	LHA-1A	LHA-1A	LHA-1B	LHA-1B	LHA-1C	LHA-1C
Date Sampled	2/26/97	2/26/97	2/26/97	2/28/97	2/28/97	2/28/97	2/28/97	2/27/97	2/27/97	2/27/97	2/27/97	3/5/97	3/5/97	3/5/97	3/5/97	4/2/97	4/2/97	4/2/97	4/2/97
Sampling Depth [ft bgs]	1	1	1	9	13.5	6	11.5	9	14.5	9	15.5	5.5	11.5	0.5	7.5	2	7	2.5	7.5
PAHs	 				20.0		1115												
Acenaphthene	0.00054	0.014	0.0066	0.00017	0.00081	ND	0.00058	0.0050	0.0028	0.00043	0.00016	0.21 J	ND						
Acenaphthylene	0.00034	ND	0.00043	ND	0.00055	ND	0.00014	0.0016	0.00087	ND	ND	ND	ND		-				-
Anthracene	0.00022	0.029	0.0043	0.00051	0.00033	0.000080	0.0020	0.0010	0.0018	0.0012	0.00031	0.55	ND						
Benzo(a)anthracene	0.0017	0.040	0.020	0.00031	0.0020	0.00025	0.0020	0.0031	0.0013	0.0038	0.00031	1.8	0.39						
Benzo(a)pyrene	0.0061	0.033	0.019	0.0013	0.026	0.00024	0.0036	0.0026	0.0010	0.0037	0.0016	1.8	0.51	<u></u>	•				
Benzo(b)fluoranthene	0.0074	0.040	0.023	0.0014	0.020	0.00024	0.0033	0.0032	0.00092	0.0045	0.0019	2.2	0.71		-				
Benzo(g,h,i)perylene	0.0074	0.011	0.023	0.00054	0.0056	ND	0.0043	0.0032	ND	0.0022	0.00093	0.71	0.16		-				
Benzo(k)fluoranthene	0.0022	0.011	0.0032	0.00034	0.0036	0.00014	0.0018	0.0010	ND	0.0023	0.00098	0.92	0.32						
	0.0056	0.010	0.011	0.00075	0.021	0.00014	0.0021	0.0012	0.0017	0.0029	0.0015	1.8	0.45						
Chrysene Chaptherson	0.00074	0.037	0.0018	0.00023	0.0029	ND	0.0039	ND	ND	0.0039	0.00032	0.29	ND						
Dibenzo(a,h)anthracene	0.011	0.0041	0.0018	0.00023	0.0029	0.00053	0.0000	0.0055	0.0011	0.00076	0.00032	3.8	0.50						
Fluoranthene		0.094	0.052	0.0028	0.020	ND	0.0011	0.0055	0.0011	0.0084	0.0023 ND	0.24	0.23						
Fluorene	0.00056									0.00043		_							
Indeno(1,2,3-cd)pyrene	0.0025	0.013	0.0060	0,00063	0.0080	0.000080	0.0020	0.00097	ND 0.0024		0.00094	0.81	0.19						
Naphthalene	ND ND	0.0035	0.0013	ND	0.00018	ND	ND	0.0074	0.0034	ND	ND	ND	ND						
Phenanthrene	0,0062	0.086	0.040	0.0021	0.0067	0.00033	0.0078	0.030	0.013	0.0054	0.0013	2.2	0.18						
Pyrene	0.0095	0.074	0.039	0.0022	0.021	0.00049	0.0068	0.0089	0.0035	0.0066	0.0019	3.1	0.53						
Total PAHs	0.0626	0,51	0.266	0.0159	0.185	0.0027	0.0514	0.0913	0.0375	0.0461	0.0154	20,4	4.17				••		
Metals	 											_							
Aluminum	 											_=						-	
Antimony	 											ND	ND						
Arsenic	ND	ND	ND					33.4	ND	ND	ND	6.0	4.1						
Barium						-													
Beryllium												0.41	0.51						
Cadmium	ND	ND	ND					0.61	ND	ND	ND	ND	0.030						-
Calcium		-													·~				
Chromium												11.2	16.4		·				
Cobalt																			
Copper							-					28.2	21.3						
Iron		-						•-										1	
Lead		1		<u> </u>		-		1				46.8	19.3		-				
Magnesium																			
Manganese																			-
Mercury					••							0.30	0.10			-			
Nickel	ND	ND	ND						ND	ND	ND	13.4	16.1			-			
Potassium														**					-
Selenium				-							-	ND	ND				-		
Silver			· 	-		-	•					ND	ND						
Sodium												-							
Thallium							-					0.10	ND				-		
Vanadium												-	-		~-				
Zinc	T											58.9	45.2						
																		لحصحب	

Comple ID	11114 15 1	LHA-1D-2	I TIA IN A	T 174 4P 4	T 11A 12 A	7 DA 10:0	DD * 1	DD 1 0	pp a :	DD 2.2	DD 2 1	nn co	DD 4 1	PB-4-2	PB-5-1	PB-5-2	PB-6-1	PB-6-2	PB-7-1	PB-7-2
Sample ID									PB-2-1	PB-2-2		PB-3-2								
Location	LHA-1D	LHA-1D	LHA-1D	LHA-1E	LHA-1E	LHA-1E	PB-1	PB-1	PB-2	PB-2	PB-3	PB-3	PB-4	PB-4	PB-5	PB-5	PB-6	PB-6	PB-7	PB-7
Date Sampled	4/2/97	4/2/97	4/2/97	4/2/97	4/2/97	4/2/97	3/3/97	3/3/97	3/3/97	3/3/97	3/3/97	3/3/97		2/28/97	2/28/97	2/28/97	3/4/97	3/4/97	3/5/97	3/5/97
Sampling Depth [ft bgs]	0	2.5	7.5	0	3	7.5	3.5	11.5	3	10.5	2	11.5	1_1_	5.5	0.5	6.5	0.5	7.5	2	8.5
VOCs										ļ								ļ	L	—
1,1,1-Trichloroethane															<u> </u>					
1,1,2,2-Tetrachloroethane															-	-		<u> </u>		
1,1,2-Trichloroethane	-											-								
1,1-Dichloroethane																				
1,1-Dichloroethene						-							-							
1,2-Dichloroethane									. •-										-	
1,2-Dichloropropane				1								. **				-		1		
2-Butanone (MEK)			-					1			1		-	-		-		-		
2-Chloroethyl vinyl ether												_								-
2-Hexanone								-			-		-							-
4-Methyl-2-Pentanone				-		'											_			
Acetone	-								**							-				-
Benzene													_							
Bromodichloromethane	-												. =			 				-
Bromoform	 											-	-							
Bromomethane										-										
	-									-					=					
Carbon Disulfide										 										
Carbon Tetrachloride				<u> </u>											_=_					
Chlorobenzene																				
Chloroethane														_=					·	
Chloroform	-																	-		
Chloromethane					<u></u>					-		-			~		_=			_=_
cis-1,2-Dichloroethene																		~	_=	
cis-1,3-Dichloropropene														_=_						-
cis/trans1,2-Dichloroethene				-	••											-				
Dibromochloromethane																				
Dichloromethane (Methylene Chloride)														**	~					
Ethyl benzene									'						~					
Hexachloroethane															*-	-				
Tetrachloroethene	.=-			-								-	-		-					
Toluene	-		**		**	**					_	-			1	1				
trans-1,2-dichloroethene											-	-				-				
trans-1,3-Dichloropropene			••						٠				-							_
Trichloroethene		••						-			-			-						
Trichlorofluoromethane			**			**						٠ ـــ								
Vinyl chloride			-			_			-					_						-
m&p-Xylene												_								-
o-Xylene			_				-								-					
Xylenes (unspecified)												-								
Total VOCs																				
PCBs																				
Aroclor-1016				- i																
														=			_=_			
Aroclor-1221						:- 			=-					_=_				_=		-
Aroclor-1232											_=_			_=					_=_	
Aroclor-1242													-			-				
Aroclor-1248					*-													_=_		
Aroclor-1254							=	_=_				_=_	_=_	_=				_=		
Aroclor-1260														_=_		-		_=_		
Aroclor-1268															-					
Total PCB	14.6	0.70	2.3	7.0	0.72	1.3					;==			-	-					-

Sample ID	LHA-1D-1	LHA-1D-2	LHA-1D-3	LHA-1E-1	LHA-1E-2	LHA-1E-3	PB-1-1	PB-1-2	PB-2-1	PB-2-2	PB-3-1	PB-3-2	PB-4-1	PB-4-2	PB-5-1	PB-5-2	PB-6-1	PB-6-2	PB-7-1	PB-7-2
Location	LHA-1D	LHA-1D	LHA-1D	LHA-1E	LHA-1E	LHA-1E	PB-1	PB-1	PB-2	PB-2	PB-3	PB-3	PB-4	PB-4	PB-5	PB-5	PB-6	PB-6	PB-7	PB-7
Date Sampled	4/2/97	4/2/97	4/2/97	4/2/97	4/2/97	4/2/97	3/3/97	3/3/97	3/3/97	3/3/97	3/3/97	3/3/97	2/28/97	2/28/97	2/28/97	2/28/97	3/4/97	3/4/97	3/5/97	3/5/97
Sampling Depth [ft bgs]	0	2.5	7.5	0	3	7.5	3.5	11.5	3	10.5	2	11.5	1	5.5	0,5	6.5	0.5	7.5	2	8.5
PAHs												-			1					
Acenaphthene							ND	ND .	ND	ND	ND	ND	0.00049	0.00015	0.0012	ND	0.00031	ND	ND	ND
Acenaphthylene							ND	ND	ND	ND	ND	ND	ND	ND	0.00029	ND	0.00027	ND	ND	ND
Anthracene							0.000090		0.00012	ND	0.00039	ND	0.0016	0.00023	0.0030	ND	0.0010	ND	ND	ND
Benzo(a)anthracene						*-	0.00025	0.00045	0.00016	ND	0.00030	ND	0.0043	0.00087	0.0063	0.00075	0.0029	0.00015	0.00020	ND
Benzo(a)pyrene							0.00020	0.00046	0.00010	ND	0.00029	ND	0.0041	0.00087	0.0047	0.00069	0.0028	0.00018	0.00024	ND
Benzo(b)fluoranthene	••					••	0.00029	0.00056	0.000090	ND	0.00047	ND	0.0049	0.0011	0.0074	0.00085	0.0037	0.00019	0.00033	ND
Benzo(g,h,i)perylene							0.000060	0.00013	ND	ND	0.00010	ND	0.0015	0.00037	0.0014	0.00035	0.00086	0.00014	0.000090	ND
Benzo(k)fluoranthene		-					0.00011	0.00028	0.00010	ND	0.00017	ND	0.0024	0.00056	0.0030	0.00040	0.0018	ND	0.00012	ND
Chrysene					_		0.00025	0.00045	0.00019	ND	0.00030	ND	0.0039	0.00096	0.0056	0.00076	0.0028	0.00014	0.00023	ND
Dibenzo(a,h)anthracene							ND	ND	ND	ND	ND	ND	0.00049	ND	0.00051	ND	0.00031	ND	ND	ND
Fluoranthene							0.00050	0.00090	0.00035	ND	0.00072	ND	0.0095	0.0018	0.014	0.0016		0.00022	0.00032	ND
Fluorene							ND	ND	ND	ND	ND	ND	0.00042	ND	0,0016	ND	0.00037	ND	ND	ND
Indeno(1,2,3-cd)pyrene			-			••	0.000070	0.00016	0.000070	ND	0.00013	ND	0.0016	0.00036	0.0015	0.00038	0.00098	0.00014	0.00010	ND
Naphthalene							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene							0.00036	0.00049	0.00013	ND	0.00041	ND	0.0075	0.0017	0.013	0.00097	0.0033	ND	0.00013	ND
Pyrene							0.00043	0.00081	0.00030	ND	0.00055	ND	0.0080	0.0019	0.012	0.0012	0.0053	0.00020	0.00032	ND
Total PAHs				**			0.0026	0.0047	0.0016	0	0.0038	0	0.0507	0.0108	0.0755	0.0079	0.0327	0.0014	0.0021	0_
Metals																				
Aluminum				1		•								-	1					
Antimony							ND	ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND	ND	-	-
Arsenic							5.0	13.9	2.7	27.8	4.2	10.1	16.4	21.6	12.0	9.4	10.8	7.6		
Barium				••				~-		-				-	1					
Beryllium				•			0.42	0.33	0.31	0.21	0.49	0.46	0.36	0.66	0.24	0.25	0.34	0.29	0.29	0.10
Cadmium				-			ND	2.3	0.56	ND	ND	ND	0.79	1.3	2.2	0.27	1.0	_ND	ND	ND
Calcium			••		-	••	••		1	-		-	•	1	-					
Chromium							62.4	14.0	11.2	8.4	29.7	11.5	11.5	17.5	. 15.5	10.7	13.8	5.8	-	1
Cobalt				•				-	-				. 1	1	1	-	-			
Copper							63.3	214	16.8	46.7	39.1	31.2	116	57.4	90.8	38,3	64.5	28.6	-	
Iron														**	1			-		
Lead		-					0.12	338	0.30	53.8	36.7	31.4	164	1980	281	100	181	25,2	-	
Magnesium		,											-							
Manganese										-		_=_								
Mercury			••				0.18	17.7	0.14	0.090	0.090	0.12	0.38	0.44	0.96	0.14	0.25	0.12		
Nickel							30.3	20.4	51.4	9.1	63.0	15.6	19.4	19.9	28.8	14.0	17.3	13.4		
Potassium					~-													-	-	
Selenium							ND	4.1	ND	3.0	ND	2.7	2.7	3.0	ND	ND	ND	ND		
Silver			~	••			ND	1.8	1.3	ND.	ND	0.21	ND	ND	ND	ND	ND	ND		
Sodium								**						-	-	_	-			
Thallium			-				0.12	0.25	ND	0.12	ND	ND	0.33	0.41	0.22	0.13	0.20	0.20		-
Vanadium						**		-						_	_		-			
Zinc							115	720	0.14	16.9	74.3	45.2	156	1330	280	85.8	138	25.4	-	

Sample ID	PB-8-1	PB-8-2	QE001	QE002	QE003	QE004	QE005	QR-01	QR-02	QR-03	OR-04	SF-3A-1	SF-3A-2	SF-3A-3	SF-3B-1	SF-3B-2	SF-3B-3	SF-3C-1	SF-3C-2	SF-3C-3
Location	PB-8	PB-8	OE001	QE002	QE003	QE004	QE005	QR-01	QR-02	QR-03	OR-04	SF-3A	SF-3A	SF-3A	SF-3B	SF-3B	SF-3B	SF-3C	SF-3C	SF-3C
Date Sampled	3/5/97	3/5/97		3/27/92	3/27/92	3/27/92	3/27/92	3/27/96	3/27/96	3/27/96	3/27/96	2/24/97	3/17/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97
Sampling Depth [ft bgs]	1	8.5	0	0	0	0	0		1.5	0		0	3	5.5	0	3	5.5	0	3	5.5
VOCs				Ť																
1.1.1-Trichloroethane								ND	ND	ND	ND					-				
1.1,2,2-Tetrachloroethane								. ND	ND	ND	ND					_				
1,1,2-Trichloroethane								ND	ND	ND	ND			-		-				
1.1-Dichloroethane	-				=-			ND	ND	ND	ND						-			
1.1-Dichloroethene								ND	ND	ND	ND					_	-	_		
1,2-Dichloroethane		-						ND	ND	ND	ND		-				••			
1,2-Dichloropropane								ND	ND	ND	ND									
2-Butanone (MEK)						_		ND	ND	ND	ND		_		-					
2-Chloroethyl vinyl ether																				
2-Hexanone								ND	·ND	ND	ND				=					
4-Methyl-2-Pentanone								ND	ND	ND	ND					-				
Acetone								ND	ND	ND	8.0 J									
Benzene								0.35 J	0,68 J	ND	0.28 J									=
Bromodichloromethane								ND	ND	ND	ND									
Bromoform								ND	ND	ND	ND									
Bromomethane							-	ND	ND	ND	ND								-	
Carbon Disulfide								ND	ND	ND	ND									
Carbon Tetrachloride								ND	ND	ND	ND									
Chlorobenzene				-				ND	ND	ND	ND									
Chloroethane								ND	ND	ND	ND									
Chloroform								ND	ND	ND	ND							-		
Chloromethane								ND	ND	ND	ND									
cis-1,2-Dichloroethene	-							112	140	110	:-									
cis-1,3-Dichloropropene	_					_		ND		ND	ND	_								
cis/trans1,2-Dichloroethene								ND	ND	ND	ND					-				
Dibromochloromethane					-			ND	ND	ND	ND									
Dichloromethane (Methylene Chloride)								ND	ND	ND	ND									
Ethyl benzene								0.67 J	2.1	ND	0.31 J					**				-
Hexachloroethane								ND	ND	ND	ND						-			
Tetrachloroethene								0.26 J	0.51 J	ND	0.35 J									
Toluene								0.91 J	2.3	ND	0.63 J					-				
trans-1,2-dichloroethene								ND	ND	ND	ND									
trans-1,3-Dichloropropene								ND	ND	ND	ND	-				_				
Trichloroethene								0.68 U	0.93 U	ND	0.35 U							-		
Trichlorofluoromethane				-						- 112							-		-	
Vinyl chloride								ND	ND	ND	ND	-	-							
m&p-Xylene								2.0 U	3.5	ND	0.77 J	-					·			
o-Xylene		=						0.97 J	1.6	ND	0.77 J			 -						
Xylenes (unspecified)		=	-					0.913	1.0		0.55									
Total VOCs								5.84	11.6	0	11									
PCBs		 						2,07	11.0	<u> </u>										
Aroclor-1016								ND	ND	ND	ND									
		 						ND	ND ND	ND	ND						_=_			
Aroclor-1221						-=		ND ND	ND	ND	ND ND			_=						
Aroclor-1232 Aroclor-1242								ND ND			ND			_=_		-		-		
									ND ND	ND		_=-		_=_						
Aroclor-1248								ND	ND	ND	ND		_=_		_=_					
Aroclor-1254				_=				ND	ND	ND	· ND			=_		_=-				
Aroclor-1260					_=_			ND	ND	ND	ND_	_=_								
Aroclor-1268				740		 					3170					-=-				
Total PCB			5.0 U	74.0	5.0 U	5.0 U	2.0 U	ND	ND	ND	ND	0.33	_ND	0.36	ND	ND	ND	0.28	0.20	8.3

Sampling Depth [R bgs]	
Date Sampled 35597 35597 372792	SF-3C
Sampling Depth (R bgs) 1 8.5 0 0 0 0 0 0 0 0 0	2/24/97
Acenaphthene	5.5
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)pyrene	·
Benzo(a)pyrene	
Benzo(b)fluoranthene	-
Benzo(k)fluoranthene	_
Benzo(k)fluoranthene	
Chrysene 0.00013 0.0026 370 710 24.0 520	_
Dibenzo(a,b)anthracene ND 0.00026 100 J 220 7.1 J 170	-
Fluoranthene	
Fluorene ND 0.0015 140 280 8.9 J 190	
Naphthalene ND 0.00055	-
Phenanthrene 0.000080 0.0087 640 1600 42.0 840 <	
Pyrene 0.00022 0.0062 - - - - 610 1500 39.0 1200 -	
Total PAHs 0.0014 0.0427 4860 10300 332 7580	
Metals January January <th< td=""><td>_</td></th<>	_
Aluminum 9460 7440 14900 7760	
Antimony 2.4 BJ 3.0 BJ 3.5 BJ 2.8 BJ	
Arsenic 1.3 0.025 0.013 0.021 0.0072 29.6 U 48.2 U 27.4 U 28.4 J 5.2 6.0 10.0 4.7 3.9 1.6 4.5 8.0 Barium 1.24 250 96.0 104	
Barium 124 250 96.0 104	<u></u>
	0.92
Pagetlium 0.48 0.23	
Beryllium 0.48 0.33 4.5 J 0.53 BJ 0.54 BJ 1.2 J	
Cadmium ND ND 1.3 U 1.7 1.0 B 1.2	
Calcium 15000 15200 1830 14600	
Chromium 0.048 0.058 0.013 0.0060 0.0040 U 66.7 30.2 50.6 U 49.6 U	
Cobalt 13.6 10.8 B 20.5 10.7 B	 /
Copper 203 J 159 J 116 J 173 J	
Iron 27500 26100 30800 23100	
Lead 0.35 2.1 0.12 0.069 0.070 309 303 269 255	
Magnesium 5230 4240 8340 5440	
Manganese 344 241 828 298	
Mercury 3.8 U 1.0 U 0.42 U 2.3	
Nickel 37.4 31.0 75.1 29.6 33.2 213 661 44.2 26.0 23.4 48.0 1900	35.6
Potassium 1430 J 1030 B 644 B 1380 J	
Selenium	
Silver 0.38 BJ 0.53 U 0.57 U 0.49 BJ	
Sodium 121 B 336 B 220 B 241 B	
Thallium ND ND ND	·
Vanadium	
Zinc ND ND ND	-

Sample ID	SF-4A-1	SF-4A-2	SF-4A-3	SF-4B-1	SF-4B-2	SF-4B-3	SF-4C-1	SF-4C-2	SF-4C-3	SF-4D-1	SF-4D-2	SF-4D-3	SF-6A-1	SP-6A-2	SF-6A-3	SF-6B-1	SF-6B-2	SF-6B-3	SF-6C-1	SF-6C-2
Location	SF-4A	SF-4A	SF-4A	SF-4B	SF-4B	SF-4B	SF-4C	SF-4C	SF-4C	SF-4D	SF-4D	SF-4D	SP-6A	SF-6A	SF-6A	SF-6B	SP-6B	SF-6B	SF-6C	SF-6C
Date Sampled	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97
Sampling Depth [ft bgs]	0	3	5.5	0	3	5.5	0	3	5.5	0	3	5.5	0	3	5.5	0	3	5.5	0	3
VOCs						0.5														
1,1,1-Trichloroethane																				
1,1,2,2-Tetrachloroethane																				
1,1,2-Trichloroethane																				
1,1-Dichloroethane			-	_=_																
1,1-Dichloroethene								-		**				·						
1,2-Dichloroethane													-							
1,2-Dichloropropane	<u> </u>										-			**				**		
2-Butanone (MEK)	<u></u>	-	-										· ••	-						
2-Chloroethyl vinyl ether														P-0 .			-			
2-Hexanone															-					
4-Methyl-2-Pentanone																	· 			
Acetone												-	**				**	**	**	
Benzene	-		-									•							·	
Bromodichloromethane	-					-							-					1		
Bromoform													-				-			
Bromomethane	_									_			-			'	-	-	-	
Carbon Disulfide																		·		
Carbon Tetrachloride		_																		
Chlorobenzene													-							
Chloroethane		-													-					
Chloroform																	-			
Chloromethane				-					-						-					
cis-1,2-Dichloroethene					1 2 22	~							2				- 22	-		<u>-</u> -
cis-1,3-Dichloropropene														-						
cis/trans1,2-Dichloroethene	·																			
Dibromochloromethane												<u> </u>								
	=				_=_				-										_=_	
Dichloromethane (Methylene Chloride)			_=_													_=_			_=_	
Ethyl benzene																			_=	
Hexachloroethane																				
Tetrachloroethene											<u></u>									
Toluene										·										
trans-1,2-dichloroethene							'			· ••										
trans-1,3-Dichloropropene														 .		_=_		-		
Trichloroethene													_=_						_=_	
Trichlorofluoromethane	-																			_=_
Vinyl chloride																-	_=_			
m&p-Xylene																				
o-Xylene													_=_							
Xylenes (unspecified)																				
Total VOCs														**						
PCBs							I						·_I			T				
Aroclor-1016	-																	***		
Aroclor-1221			-															••		
Aroclor-1232												-								
Aroclor-1242																			·	
Aroclor-1248																	_			
Aroclor-1254]												-	
Aroclor-1260				-		4-											-			
Aroclor-1268																				
Total PCB																				
I TOWN CD				لبتب																

Sample ID	SF-4A-1	SF-4A-2	SF-4A-3	SF-4B-1	SF-4B-2	SF-4B-3	SF-4C-1	SF-4C-2	SF-4C-3	SF-4D-1	SF-4D-2	SF-4D-3	SF-6A-1	SF-6A-2	SF-6A-3	SF-6B-1	SF-6B-2	SF-6B-3	SF-6C-1	SF-6C-2
Location	SF-4A	SF-4A	SF-4A	SF-4B	SF-4B	SF-4B	SF-4C	SF-4C	SF-4C	SF-4D	SF-4D	SF-4D	SF-6A	SF-6A	SF-6A	SF-6B	SF-6B	SF-6B	SF-6C	SF-6C
Date Sampled	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/24/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97	2/21/97
Sampling Depth [ft bgs]	0	3	5.5	0	3	5,5	0	3	5.5	0	3	5.5	0	3	5.5	0	3	5.5	0	3
PAHs																				
Acenaphthene																-				
Acenaphthylene																				
Anthracene														-						
Benzo(a)anthracene														-						
Benzo(a)pyrene				-													-			
Benzo(b)fluoranthene																_				-
Benzo(g,h,i)perylene																				-
Benzo(k)fluoranthene								••		-										-
Chrysene																				
Dibenzo(a,h)anthracene							 -													
Fluoranthene														-					-	=
Fluorene																				
Indeno(1,2,3-cd)pyrene																			=	
Naphthalene		**							=							-				
<u> </u>	_=		==										=					=		
Phenanthrene							 -													
Pyrene Total PAHs		_=_																		-
Metals	<u>_</u>	<u> </u>										<u> </u>						<u> </u>		
Aluminum	_=_																			
Antimony								<u>-</u>								-		<u> </u>		
Arsenic													_=_							
Barium																				
Beryllium							0.74			9.1	15.4									
Cadmium	0.25	0.65	0.21	0.25	0.57	0.56		0.59	0.92			1,6	0.72	0.60	ND	0.86	2.3	0.77	0.54	0.49
Calcium												_=_						-		
Chromium									_=					_=-						
Cobalt		_=					_=_					_=_						<u></u>		
Copper														_=_		-				
Iron	_=													_=-						
Lead									_=_					_=						
Magnesium																			_=_	<u> </u>
Manganese		_=-												_=	_=_					
Mercury		_=_		_==								_=					**		-	
Nickel				_=									-							
Potassium		_=_										_=_		_=		<u> </u>				
Selenium									_=_						_=_					
Silver			_=_																	
Sodium						_=_						_=_			_=_					
Thallium	_=_			_=_																
Vanadium														-						
Zinc	J)							••	_					-	**	·	

Sample ID	SF-6C-3	SF-6D-1	SF-6D-2	SF-6D-3	SF-8A-1	SF-8A-2	SF-8B-1	SF-8B-2	SF-8C-1	SF-8C-2	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	TP-13	TP-14	TP-16	TP-5	TP-5-1	TP-6
Location	SF-6C	SF-6D	SF-6D	SF-6D	SF-8A	SF-8A	SF-8B	SF-8B	SF-8C	SF-8C	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	TP-13	TP-15	TP-17	TP-5	TP-5	TP-6
Date Sampled	2/21/97	2/21/97	2/21/97	2/21/97	3/6/97	3/6/97	3/6/97	3/6/97	3/6/97	3/6/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	6/4/98	6/4/98	6/5/98	6/3/98	6/3/98	6/3/98
Sampling Depth [ft bgs]	5.5	0	3	5.5	8	13	9	14.5	10.5	14.5	0	0	0	0	0	0			9	8	8	
VOCs	1																			,		
1.1.1-Trichloroethane			-				-						-				ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane			-								-		_				ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane				-									-				ND	ND	ND	ND	ND	ND
1,1-Dichloroethane														-	-	_	ND	ND	ND	ND	ND	ND
1.1-Dichloroethene												-					ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	-																ND	ND	ND	ND	ND	ND
1,2-Dichloropropane			_								-			_			ND	ND	ND	ND	ND	ND
2-Butanone (MEK)							-	-		-					-	_	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether										-	-						- 112		-112			
2-Choroenyi vinyi eulei 2-Hexanone	<u> </u>											=	-		-		ND	ND	ND	ND	ND	ND
																<u> </u>	ND	ND	ND ND	ND	ND	ND
4-Methyl-2-Pentanone	 -												-				_	ND	ND			
Acetone		~-					_=				0.050 U				0.050.17	-	ND 15	_	_	ND	ND	ND
Benzene Benzene											10.050 0	1	0.050 U	*****	0.050 U		1.5	51.0	ND	1.5	1.6	0.63
Bromodichloromethane								-	_=		 	 -	_=_				ND	ND	ND	ND	ND	ND
Bromoform			_ =			_=_		==			-	 	 - -				ND	ND	ND	ND	ND	ND
Bromomethane	<u> </u>										 	 -	 -			-	ND	ND	ND	ND	ND	ND
Carbon Disulfide										_=			 -			-	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	<u> </u>									 -				. =			ND.	ND	ND	ND	ND	ND
Chlorobenzene																	ND	ND	ND	ND.	ND	ND
Chloroethane																	ND	ND	ND	ND	ND	ND
Chloroform											-			_=_		<u></u>	ND ·	ND	ND	ND	ND	ND
Chloromethane											<u> </u>		=				ND	ND	ND	ND.	ND	ND
cis-1,2-Dichloroethene										<u> </u>						<u> </u>		· '			'	
cis-1,3-Dichloropropene															_=							_=
cis/trans1,2-Dichloroethene																·	ND	ND	ND	ND:	ND	ND
Dibromochloromethane										_=	<u></u>						ND	ND	ND	ND	ND	ND
Dichloromethane (Methylene Chloride)																	0.32	3.7	0.49	0.51	0.39	ND
Ethyl benzene																	12.0	290	3.5	17.0	18.0	16.0
Hexachloroethane																	ND	ND	ND			
Tetrachloroethene											-						ND	ND	ND	ND	ND_	ND
Toluene													-		·		2.2	310	2.6	2.5	2.4	0.62
trans-1,2-dichloroethene																						
trans-1,3-Dichloropropene														-			ND	ND	ND	ND	ND	ND
Trichloroethene									~~			-					ND	ND	ND	ND	ND	ND
Trichlorofluoromethane										-							-					
Vinyl chloride							••		•						1		ND	ND	ND	ND	ND	ND
m&p-Xylene	**				••							-		-	-	-						
o-Xylene										-												
Xylenes (unspecified)			-											_	_		25.0	87.0	18.0	79.0	75.0	13.0
Total VOCs											0	0	0	0	0	-	41	742	24.6	101	97.4	30.3
PCBs																						
Aroclor-1016			-								0.039 U	0.20 U	ND	0.24 U	0,22 U	0.20 U						
Aroclor-1221				-							0.039 U	0.20 U	ND	0.24 U		0.20 U						
Aroclor-1232											0.039 U	0.20 U	ND	0.24 U	0.22 U	0.20 U						
Aroclor-1252 Aroclor-1242											0.039 U	1.3	3.0	3.2	1.8	1.7						
Aroclor-1248											0.039 U	0.20 U	ND	0.24 U	0.22 U	0.20 U						
Aroclor-1254											0.039 0	0.20 U	ND	0.24 U	0.22 U	0.20 U						
											0.039 U											
Aroclor-1260						_=	_=				U.U.SY U	0.20 U	0.26	0.24 U	0.55	0.20 U						_=
Aroclor-1268											0.00											_=_
Total PCB										<u></u>	0.38	1.3	3.26	3.2	2.35	1.7					_=	

Sample ID	SF-6C-3	SF-6D-1	SF-6D-2	SF-6D-3	SF-8A-1	SF-8A-2	SF-8B-1	SF-8B-2	SF-8C-1	SF-8C-2	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	TP-13	TP-14	TP-16	TP-5	TP-5-1	TP-6
Location	SF-6C	SF-6D	SF-6D	SF-6D	SF-8A	SF-8A	SF-8B	SF-8B	SF-8C	SF-8C	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	TP-13	TP-15	TP-17	TP-5	TP-5	TP-6
Date Sampled	2/21/97	2/21/97	2/21/97	2/21/97	3/6/97	3/6/97	3/6/97	3/6/97	3/6/97	3/6/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	6/4/98	6/4/98	6/5/98	6/3/98	6/3/98	6/3/98
Sampling Depth [ft bgs]	5.5	0	3	5.5	8	13	9	14.5	10.5	14.5	0	0	0	0	0	0		_	9	8	8	
PAHs							i															
Acenaphthene		_			0.0063	0.0014	ND	ND	0.0077	0.00019									~~.			
Acenaphthylene					ND	ND	ND	ND	0.00062	ND				-		_						
Anthracene					0.018	0.0037	ND	ND		0.00021				-				-				
Benzo(a)anthracene					0.023	0.0062	0.00011	ND	0.0044	0.00028						-			_			-
Benzo(a)pyrene		-			0.018	0.0050	0.00010	ND	0.0022	0.00022			_	_	-	-						-
Benzo(b)fluoranthene					0.022	0.0059	0.00010	ND	0.0028	0.00022				-		-	-	-			-	
Benzo(g,h,i)perylene					0.0065	0.0022	0.000070	ND		0,00063							-					-
Benzo(k)fluoranthene					0.0088	0.0028	ND	ND	0.0015	0.00011				_								
Chrysene					0.022	0.0057	0.00010	ND	0.0039	0.00026			-		-			-				
Dibenzo(a,h)anthracene					0.0025	0.00077	ND	ND	0.00026	ND				_ ·							-	
Fluoranthene					0.057	0.014	0.00026	ND		0.00074	-					_		-	_			
Fluorene					0.0079	0.0017	ND	ND	-	0.00017						_		-		-		
Indeno(1,2,3-cd)pyrene					0.0076	0.0024	0.000070	ND	0.00075	0.00012				-	-							
Naphthalene					0.0022	0.00059	ND	ND	0.0081	0.00085			-	-	-			-	-			
Phenanthrene				-	0.064	0.014	0.00017	ND	0.028	0.00066		_						_				
Pyrene		-	4-		0.044	0.011	0.00018	ND		0.00078			-				_					
Total PAHs					0.31	0.078	0,0012	0	0.107	0.0054					-	_	-					
Metals						3,0.0	0.0012		-	-	~~~~											
Aluminum															-							
Antimony			-																			
Arsenic											0.20 U	0.20 ป	0.20 U	0.20 U	0.20 U						-:	
Barium													-									
Beryllium												_				-	_		-			
Cadmium	0.28	0.56	1.0	0.41	0.32	0.24	ND	ND	ND	ND			-				_					
Calcium																		-	_			
Chromium										-	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U							
Cobalt														-								
Copper																		-				
Iron									<u> </u>					-	-			-				
Lead					367	387	63.0	58.2	98.7	63.1	0.21	0.10	0.11	0.19	0.59							
Magnesium							05.0					0.10	0.11	U.X2	0.57				-			
Manganese .	7																					
Mercury																						
Nickel																						
Potassium													-				 -					
Selenium				-					-													
Silver																						
Sodium																						
Thallium																						
Vanadium		 -																 -				
Zinc							- -													-=-		
LINE	لـــــا							لستسا	النحت		ليستنيب	لــــــــــــــــــــــــــــــــــــــ			نـــــــــــــــــــــــــــــــــــــ	لــتـــا						

Sample ID			TP02-01	
Location	TP01-01	TP01-02	TP02-01	TP02-0
Date Sampled	3/25/98	3/25/98	3/25/98	3/25/98
Sampling Depth [ft bgs]	-			
VOCs				
1,1,1-Trichloroethane			-	-
1,1,2,2-Tetrachloroethane				
1,1,2-Trichloroethane				
1,1-Dichloroethane		*-		
1,1-Dichloroethene				
1,2-Dichloroethane	<u> </u>			
1,2-Dichloropropane				
2-Butanone (MEK)				
2-Chloroethyl vinyl ether			•	
2-Hexanone		-	1	
4-Methyl-2-Pentanone		-	1	
Acetone				
Benzene			1	
Bromodichloromethane		1	-	
Bromoform				1
Bromomethane				
Carbon Disulfide				
Carbon Tetrachloride			-	
Chlorobenzene				
Chloroethane				
Chloroform		**		-
Chloromethane				
cis-1,2-Dichloroethene				•••
cis-1,3-Dichloropropene				
cis/trans1,2-Dichloroethene				
Dibromochloromethane				
Dichloromethane (Methylene Chloride)				
Ethyl benzene				
Hexachloroethane				
Tetrachloroethene				
Toluene				
trans-1,2-dichloroethene	-	-		
trans-1,3-Dichloropropene				
Trichloroethene				
Trichlorofluoromethane				
Vinyl chloride				
m&p-Xylene				
o-Xylene				
Xylenes (unspecified)				
Total VOCs				
PCBs				
Aroclor-1016				
Aroclor-1221				
Aroclor-1232				
Aroclor-1242				-
Aroclor-1248				
Aroclor-1254	-			
Aroclor-1260				
Aroclor-1268				
Total PCB				

Sample ID	TP01-01	TP01-02	TP02-01	TP02-02
Location	TP01-01		TP02-01	
Date Sampled	3/25/98	3/25/98	3/25/98	3/25/98
Sampling Depth [ft bgs]				
PAHs				
Acenaphthene				
Acenaphthylene				**
Anthracene	-2			
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b)fluoranthene				
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene				
Chrysene				
Dibenzo(a,h)anthracene				_
Fluoranthene				
Fluorene			-	
Indeno(1,2,3-cd)pyrene	-	-		
Naphthalene				
Phenanthrene				
Pyrene	- 1		-	-
Total PAHs				-
Metals				
Aluminum	4090	464	3710	4630
Antimony	ND	ND	3.7 BJ	1.9 BJ
Arsenic	14.7 J	4.8 J	7.6 J	6.5 J
Barium	136 J	10.3 B	18.4 B	24.3 B
Beryllium	0.35 B	0.030 B	0,20 B	0.23 B
Cadmium	0.93 B	1.3 B	0.20 B	0.40 B
Calcium	ND	623 B	ND	ND
Chromium	15.8 J	3.0 J	24.3 J	20.0 J
Cobalt	4.4 B	0.45 B	6.2 B	4.2 B
Copper	ND	ND	ND	ND
Iron	1200	1470	12200	11200
Lead	249 J	76.0 J	95.0 J	109 J
Magnesium	1430 B	331 B	1880 J	3200 J
Manganese	169	15.7	120	209
Mercury	0.84	0.12 B	0.47 J	3.8 J
Nickel	11.1 B	6.5 B	31.1 J	12.0 B
Potassium	623 B	76.2 B	736 B	862 B
Selenium	1.6	ND	2.4	2.6
Silver	0.97 B	0.30 B	0.49 B	0.60 B
Sodium	282 B	210 B	470 B	510 B
Thallium	ND	ND	ND	ND
Vanadium	18.7	16,2	15.7 B	15.8 B
Zinc	168 J	140 J	107 J	98.6 J

⁻⁻ indicates the constituent was not analyzed in the sample

ND indicates the constituent was reported as non detect in the sample without information about the reporting limit being provided

U indicates the constituent was reported as non detect in the sample; the value presented represents the reporting limit

I indicates the concentration was estimated in the sample

B indicates the constituent was present below the reporting limit

Sample ID	ER-L	ER-M	98312-01	98312-02	98312-03	98312-04	98312-05	98312-06	98312-07	98312-08	98312-09	98317-01
Location			SED-1A	SED-1A	SED-1A	SED-1B	SED-1B	SED-2A	SED-2A	SED-2B	SED-2B	SED-3A
Date Sampled			11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/13/98
Sampling Depth			0	2	4	00	3	0	3	0	3.4	0
VOCs												
1,1,1-Trichloroethane												
1,1,2,2-Tetrachloroethane	**								•			
1,1,2-Trichloroethane									4-			
1,1-Dichloroethane	••			***						-		
1,1-Dichloroethene	**						••	4.0	@M			
1,2-Dichloroethane												
1,2-Dichloropropane												
2,2'-oxybis(1-Chloropropane)	**		**									
2-Butanone (MEK)												
2-Hexanone		•			•					-	••	
4-Methyl-2-Pentanone	- 1				4.		••					
Acetone		•			•					•		
Benzene	•				••							
Bromodichloromethane	•		*-									••
Bromoform		••								´	••	
Bromomethane	~ ==			,				· ·				
Carbon Disulfide								,				
Carbon Tetrachloride												
Chloroethane			. 						- -			 .
Chloroform							••			••		
Chloromethane		**							**			
cis-1,2-Dichloroethene							6.0		·		••	
cis-1,3-Dichloropropene								wa-				
Dibromochloromethane										••		
Dichloromethane (methylene chloride)				 ·								••
Ethyl benzene												
Hexachloroethane									·			
Tetrachloroethene										**	**	
Toluene											**	
trans-1,2-Dichloroethene			**									
trans-1,3-Dichloropropene		**						**				
Trichloroethene								**		••		
Vinyl Chloride				·				·			a	
Xylenes (unspecified)									••			
Total VOCs							**					

Sample ID	ER-L	ER-M	98312-01	98312-02	98312-03	98312-04	98312-05	98312-06	98312-07	98312-08	98312-09	98317-01
Location			SED-1A	SED-1A	SED-1A	SED-1B	SED-1B	SED-2A	SED-2A	SED-2B	SED-2B	SED-3A
Date Sampled			11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/13/98
Sampling Depth			0	2	4	0	3	0	3	0	3.4	0
PAHs				-		·				·		
Acenaphthene	16	500	73.0	660	1200	6.3	1500	10.0	95.0	1.1 J	130	12.0
Acenaphthylene	44	640	14.0 J	61.0 J	120 J	4,4	150 J	12.0	14.0 J	3.0	3.3 J	5.9
Anthracene	85.3	1100	35.0	290	660	4.3	680	9.1	55.0	2.1	9.8	7.4
Benzo(a)anthracene	261	1600	65.0	290	500	15.0	640	41.0	63.0	8.6	15.0	22.0
Benzo(a)pyrene	430	1600	51.0	180	310	14.0	430	40.0	44.0	9.8	11.0	20.0
Benzo(b)fluoranthene		**	60.0	220	360	16.0	500	47.0	54.0	11.0	14.0	24.0
Benzo(g,h,i)perylene			24.0	86.0 J	140 J	6.1	210 J	20.0	20.0 J	4.2	4.0	9.0
Benzo(k)fluoranthene	••		24.0	92.0	150	6.7	230	19.0	23.0	4.9	5.6	9.4
Chrysene	384	2800	50.0	230	440	13.0	580	35.0	60.0	8.2	14.0	18.0
dibenzo(a,h)anthracene	63.4	260	6.7	28.0	48.0	1.8	65.0	5.4	5.9	1.3	1.3	2.6
Fluoranthene	600	5100	170	970	1700	32.0	2200	110	180	22.0	45.0	54.0
Fluorene	19	′ 540	49.0	590	1100	3.2	1400	2.4 J	83.0	0.53 J	120	5.0
Indeno(1,2,3-cd)pyrene	••		28.0	97.0	160	7.3	230	23.0	22.0	5.0	4.9	10.0
Naphthalene	160	2100	190	3400	8000	9.9	7400	1.8 J	570	0.35 J	48.0	1.3 J
Phenanthrene	240	1500	160	1600	2900	14.0	3700	23.0	240	4.4	420	29.0
Pyrene	665	2600	140	710	1300	31.0	1600	88.0	150	20.0	36.0	47.0
Total PAHs	4022	44792	1140	9500	19100	185	21500	487	1680	106	882	277
PCBs					·							
Aroclor-1016			0.15 U	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.14 U	0.15 U	0.14 U	0.16 U
Aroclor-1221			0.15 U	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.14 U	0.15 U	0.14 U	0.16 U
Aroclor-1232			0.15 U	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.14 U	0.15 U	0.14 U	0.16 U
Aroclor-1242			0.15 U	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.14 U	0.15 U	0.14 U	0.16 U
Aroclor-1248			0.60	0.68	3.2	0.34	3.8	0.58	1.4	0.46	0.88	0.72
Aroclor-1254			0.25	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.14 U	0.15 U	0.14 U	0.16 U
Aroclor-1260			0.15 U	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.32	0.15 U	0.23	0.19
Aroclor-1268			0.15 U	0.13 U	0.16 U	0.14 U	0.17 U	0.14 U	0.14 U	0.15 U	0.14 U	0.16 U
Total PCBs			0.85	0.68	3.2	0.34	3.8	0.58	1.7	0.46	1.1	0.91
Metals												
Aluminum		•			••		**	<u> </u>				
Antimony	2	25					*-					
Arsenic	8.2	70	18.0	29.4	86.8	15.2	31.3	19.1	33.8	16.6	22.2	16.9
Barium				<u></u>								
Beryllium			.=-							**		
Cadmium	1.2	9.6										
Calcium												
Chromium	81	370	88.8	120	270	73.3	235	82.4	148	74.9	147	77.8
Cobalt			:									
Copper	34	270									<u> </u>	

Sample ID	ER-L	ER-M	98312-01	98312-02	98312-03	98312-04	98312-05	98312-06	98312-07	98312-08	98312-09	98317-01
Location			SED-1A	SED-1A	SED-1A	SED-1B	SED-1B	SED-2A	SED-2A	SED-2B	SED-2B	SED-3A
Date Sampled			11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/8/98	11/13/98
Sampling Depth			0	2	4	0	3	0	3	0	3.4	0
Iron		*• .										
Lead	46.7	218	115	189	267	98.5	235	114	224	107	220	109
Magnesium	•		**	••				 - 1				
Manganese		•										
Mercury	0.15	0.71			**							
Nickel	20.9	51.6			••				••			
Potassium	**											
Selenium												
Silver	1	3.7										
Sodium		••								· 		
Thallium	••					·				**		••
Vanadium	**			**								
Zinc	150	410		•	-				~=	 .		
Grain Size												
Percent Coarse Gravel	•-		*-					••				
Percent Coarse Sand		•		•				•-	***			
Percent Fine Gravel	**		**									
Percent Fine Sand	-											
Percent Finer (0_001mm)						••	**				••	
Percent Finer (0_002mm)			**									
Percent Finer (0_003mm)	**										••	
Percent Finer (0_005mm)						••			••			
Percent Finer (0_006mm)										**	••	
Percent Finer (0_009mm)						••					.	
Percent Finer (0_012mm)	**	-										a is
Percent Finer (0_016mm)										**		
Percent Finer (0_021mm)												
Percent Finer (0_029mm)						-						
Percent Fines			**									
Percent Medium Sand												
Percent Moisture											***	••
Total Organic Carbon								••				
рН	**											**

Sample ID	98317-02	98317-03	98317-04	98317-05	98317-06	98317-07	98317-08	98323-01	98323-02	98323-05	98323-06	98323-07
Location .	SED-3A	SED-3B	SED-3B	SED-4A	SED-4A	SED-4B	SED-4B	HAB-01	HAB-01	SED-1.5C	SED-1.5C	SED-3.5C
Date Sampled	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/19/98	11/19/98	11/19/98	11/19/98	11/19/98
Sampling Depth	2.7	0	3.9	0	4.9	0	4.6	8.5	11.5	4	0	3.8
VOCs												
1,1,1-Trichloroethane									~~	2.9 U		1.5 U
1,1,2,2-Tetrachloroethane										0.58 U		0.30 U
1,1,2-Trichloroethane									**	1.7 U		0.90 U
1,1-Dichloroethane				**						2.9 U		1.5 U
1,1-Dichloroethene										1.2 U		0.60 U
1,2-Dichloroethane									**	1.2 U		0.60 U
1,2-Dichloropropane						••		••		0.58 U		0.30 U
2,2'-oxybis(1-Chloropropane)										37.0 U		3.7 U
2-Butanone (MEK)		-				••			, •••	2.9 U	••	1.5 U
2-Hexanone					••				4.0	2.9 U	•	1.5 U
4-Methyl-2-Pentanone		-								2.9 U	•	1.5 U
Acetone						**				2.9 U		1.5 U
Benzene				**		•		••	4.0	5.1		0.30 U
Bromodichloromethane									***	0.58 U		0.30 U
Bromoform				••						2.3 U		1.2 U
Bromomethane									~~	2.9 U		1.5 U
Carbon Disulfide		••							44	2.9 U		0.22 J
Carbon Tetrachloride									٠-	1.2 U		0.60 U
Chloroethane		••								2.9 U		1.5 U
Chloroform								Ý 		2.9 U		1.5 U
Chloromethane										2.9 U		1.5 U
cis-1,2-Dichloroethene	<u></u>					**				2.9 U		1.5 U
cis-1,3-Dichloropropene										2.9 U		1.5 U
Dibromochloromethane										2.9 U		1.5 U
Dichloromethane (methylene chloride)				·						1.7 U		0.90 U
Ethyl benzene								,	**	7.1		1.2 U
Hexachloroethane										3.7 U		0.37 U
Tetrachloroethene										0.58 U		0.30 U
Toluene									٠.	2.9 U		1.5 U
trans-1,2-Dichloroethene						•-			~-	2.9 U		1.5 U
trans-1,3-Dichloropropene									44	2.9 U		1.5 U
Trichloroethene										0.58 U	.,	0.30 U
Vinyl Chloride										2.9 U		1.5 U
Xylenes (unspecified)							**			16.0		0.40 J
Total VOCs										28.2		0.82

TA

Sample ID	98317-02	98317-03	98317-04	98317-05	98317-06	98317-07	98317-08	98323-01	98323-02	98323-05	98323-06	98323-07
Location	SED-3A	SED-3B	SED-3B	SED-4A	SED-4A	SED-4B	SED-4B	HAB-01	HAB-01	SED-1.5C	SED-1.5C	SED-3.5C
Date Sampled	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/19/98	11/19/98	11/19/98	11/19/98	11/19/98
Sampling Depth	2.7	0	3.9	0	4.9	0	4.6	8.5	11.5	4	0	3.8
PAHs								,				
Acenaphthene	39.0	0.87 J	53.0	13.0	890	0.55 J	8.6	46.0	200	35.0 J	0.44 J	1.6 J
Acenaphthylene	9.2	2.2	3.8 J	19.0	93.0 J	1.7	2.8 J	5.8 J	27.0 J	2.8 J	1.5	0.75 J
Anthracene	40.0	1.5 J	16.0	15.0	540	1.2	8.2	26.0 J	9.7 J	10.0 J	1.3 J	1.7 J
Benzo(a)anthracene	49.0	5.7	17.0	69.0	470	5.3	12.0	26.0	120	12.0	4.8	3.3
Benzo(a)pyrene	34.0	7.3	13.0	61.0	310	6.3	9.1	18.0	71.0	8.5	5.0	2.4
Benzo(b)fluoranthene	41.0	8.4	15.0	73.0	340	7.4	11.0	21.0	90.0	10.0	6.0	3.3
Benzo(g,h,i)perylene	14.0	3.6	6.0 J	23.0	140 J	2.8	4.0	10.0 J	34.0 J	4.6 J	2.6	1.6 J
Benzo(k)fluoranthene	19.0	3.8	6.4	30.0	160	3.0	4.4	8.8	36.0	3.8	2.4	1.6
Chrysene	46.0	6.1	16.0	62.0	430	5.8	12.0	18.0 J	81.0	7.6 J	3.5	3.1 J
dibenzo(a,h)anthracene	3.9	0.97	1.6	7.5	40.0	0.83	1.2	2.8 J	11.0	1.1 J	0.62	0.50
Fluoranthene	120	13.0	54.0	150	1500	9.8	34.0	83.0	330	40.0	12.0	11.0
Fluorene	43.0	0.45 J	42.0	3.6 J	960	0.34 J	7.7	44.0	160	28.0 J	0.32 J	1.5 J
Indeno(1,2,3-cd)pyrene	16.0	4.0	6.8	29.0	150	3.3	4.6	9.8	42.0	4.9	2.7	1.6
Naphthalene	74.0	0.39 J	140	1.5 J	2900	0.21 J	7.4	270	1300	390	0.20 J	2.5 J
Phenanthrene	140	3.1	84.0	31.0	2500	2.6	35.0	130	500	64.0	2.9	5.8
Pyrene	110	15.0	44.0	140	1200	12.0	30.0	56.0	240	28.0 J	11.0	9.3
Total PAHs	798	76.4	519	728	12600	63.1	192	775	3250	650	57.3	51.6
PCBs												•
Aroclor-1016	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.15 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.15 U
Aroclor-1221	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.15 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.15 U
Aroclor-1232	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.15 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.15 U
Aroclor-1242	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.15 U	0.15 U	0.15 U_	0.16 U	0.15 U	0.14 U	0.15 U
Aroclor-1248	0.62	0.45	1.3	0.42	2.1	0.44	1.6	1.4	2.2	2.8	0.53	1.2
Aroclor-1254	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.15 U	0.15 U	0.15 U	0.16 U	0.15 U	0,14 U	0.15 U
Aroclor-1260	0.54	0.15 U	0.36	0.16 U	0.27	0.15 U	0.15 U	0.27	0.30	0.32	0.14 U	0.26
Aroclor-1268	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.15 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.15 U
Total PCBs	1.2	0.45	1.7	0.42	2.4	0.44	1.6	1.7	2.5	3.1	0.53	1.5
Metals												
Aluminum										16900		15900
Antimony										1.9 U		2.0 U
Arsenic	38.4	15.5	18.7	18.4	17.4	14.6	24.9	48.5	40.6	19.0	13.6	20.0
Barium					·					89.6		101
Beryllium										0.93		0.90
Cadmium	••		••							3.8		4.7
Calcium										5400		4300
Chromium	155	75.3	152	83.7	167	76.6	187	148	158	168	69.5	150
Cobalt										13.5 B		12.6 B
Copper										188		193

Sample ID	98317-02	98317-03	98317-04	98317-05	98317-06	98317-07	98317-08	98323-01	98323-02	98323-05	98323-06	98323-07
Location	SED-3A	SED-3B	SED-3B	SED-4A	SED-4A	SED-4B	SED-4B	HAB-01	HAB-01	SED-1.5C	SED-1.5C	SED-3.5C
Date Sampled	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/13/98	11/19/98	11/19/98	11/19/98	11/19/98	11/19/98
Sampling Depth	2.7	0	3.9	0	4.9	0	4.6	8.5	11.5	4	0	3.8
Iron			·					••		37200		35900
Lead	362	104	223	130	221	113 .	227	220	212	218	97.9	202
Magnesium			••							8740		8000
Manganese	•		44	4.0			••		4	548	•	553
Mercury	44			**					·	1.9	••	2.5
Nickel		**								46.9		43.7
Potassium				**		* -			**	2720		2600
Selenium										1.9 U		1.9 U
Silver										6.2		6.3
Sodium										6700		6550
Thallium								-		2.0 U		2.0 U
Vanadium								••		40.3		38.3
Zinc										351		318
Grain Size												
Percent Coarse Gravel									**			
Percent Coarse Sand												
Percent Fine Gravel	. 											
Percent Fine Sand					••							
Percent Finer (0_001mm)												••
Percent Finer (0_002mm)												
Percent Finer (0_003mm)							••					
Percent Finer (0_005mm)												••
Percent Finer (0_006mm)												
Percent Finer (0_009mm)			· ·									
Percent Finer (0_012mm)					~~	••	••		'			
Percent Finer (0_016mm)												
Percent Finer (0_021mm)												
Percent Finer (0_029mm)												
Percent Fines											**	
Percent Medium Sand												
Percent Moisture						***						
Total Organic Carbon												
pН										'		

Sample ID	98323-08	98336-01	98336-02	99166-01	99166-02	99167-01	99168-01	99168-02	99168-03	99168-04	99168-05	99168-06
Location	SED-3.5C	CPT-8A	CPT-9A	SED-12	SED-9	VC-02	VC-06	VC-05	VC-06	SED-7	SED-7	SED-8
Date Sampled	11/19/98	12/2/98	12/2/98	6/15/99	6/15/99	6/16/99	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99
Sampling Depth	0	25	24	0	0	18	17	20	4	0	0	0
VOCs												
1,1,1-Trichloroethane									••			
1,1,2,2-Tetrachloroethane												
1,1,2-Trichloroethane								••				
1,1-Dichloroethane												••
1,1-Dichloroethene			-			,						••
1,2-Dichloroethane	••									**	` 	
1,2-Dichloropropane						**			-		•	
2,2'-oxybis(1-Chloropropane)						4.1						•
2-Butanone (MEK)		·										
2-Hexanone						4.0	••					
4-Methyl-2-Pentanone	<u>·</u>									**		
Acetone				**								
Benzene							.=-					
Bromodichloromethane								••				
Bromoform						·		** .				
Bromomethane	, · ,	••	••		**	4.0		**				
Carbon Disulfide			·			~-						
Carbon Tetrachloride						-					••	
Chloroethane					**	**						
Chloroform	~~					~-				••		
Chloromethane										••		
cis-1,2-Dichloroethene												
cis-1,3-Dichloropropene				**	••							
Dibromochloromethane				•								
Dichloromethane (methylene chloride)												
Ethyl benzene						4.						
Hexachloroethane												
Tetrachloroethene			*-									
Toluene											**	
trans-1,2-Dichloroethene											*-	••
trans-1,3-Dichloropropene												
Trichloroethene					**							
Vinyl Chloride		·										
Xylenes (unspecified)							~					
Total VOCs						**						

ТΔ

Sample ID	98323-08	98336-01	98336-02	99166-01	99166-02	99167-01	99168-01	99168-02	99168-03	99168-04	99168-05	99168-06
Location	SED-3.5C	CPT-8A	CPT-9A	SED-12	SED-9	VC-02	VC-06	VC-05	VC-06	SED-7	SED-7	SED-8
Date Sampled	11/19/98	12/2/98	12/2/98	6/15/99	6/15/99	6/16/99	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99
Sampling Depth	0	25	24	0 0	0	18	17	20	4	0	0	0
PAHs												
Acenaphthene	0.37 J	68.0	27.0	0.092 J	0.043 J	1000	410	300	3.4	0.11 J	0.091 J	0.16 J
Acenaphthylene	1.1 J	13.0 J	1.6 J	0.28 J	0.20 J	56.0 J	10.0 J	25.0 J	1.3 J	0.38 J	0.35 J	0.59 J
Anthracene	0.90 J	68.0	18.0	0.31 J	0.18 J	4600	300	220	3.0	0.39 J	0.42 J	0.55 J
Benzo(a)anthracene	3.4	63.0	10.0	0.53	0.36	280	63.0	95.0	4.2	0.60	0.61	1.2
Benzo(a)pyrene	4.1	45.0	6.3	0.64	0.46	170	30.0	66.0	3.3	0.77	0.72	1.4
Benzo(b)fluoranthene	5.2	53.0	7.5	0.78	0.54	.200	38.0	67.0	4.0	0.95	0.91	1.7
Benzo(g,h,i)perylene	2.4	16.0	2.8 J	0.19 J	0.30 J	68.0 J	12.0 J	28.0 J	1.7	0.21 J	0.22 J	0.82
Benzo(k)fluoranthene	2.2	25.0	3.5	0.36	0.24	99.0	17.0	30.0	2.1	0.48	0.46	0.81
Chrysene	3.2	62.0	10.0 J	0.62 J	0.46 J	300 J	60.0 J	100 J	3.7	0.79 J	0.73 J	1.2
dibenzo(a,h)anthracene	0.67	5.8	1.2 J		••							
Fluoranthene	6.3	150	35.0	0.80	0.61 J	1000	300	320	13.0	1.0	1.0	2.2
Fluorene	0.26 J	77.0	25.0	0.099 J	0.059 J	1300	360	260	2.4	0.12 J	0.11 J	0.16 J
Indeno(1,2,3-cd)pyrene	2.6	19.0	3.0	0.23	0.27	74.0	13.0	28.0	1.8	0.26	0.24	0.77
Naphthalene	0.24 J	280	170	0.16 J	0.061 J	3400	990	2000	2.8	0.63 J	0.15 J	0.21 J
Phenanthrene	1.8	200	64.0	0.43 J	0.28 J	2500	680	660	11.0	0.53 J	0.54 J	0.76 J
Pyrene	8.2	130	29.0	0.95	0.64 J	760	220	300	8.7 .	1.2	1.1	2.1
Total PAHs	42.9	1270	414	6.5	4.7	15800	3500	4500	66.4	8.4	7.7	14.6
PCBs						·						
Aroclor-1016	0.15 U	0.14 U	0.13 U	0.15 U	0.14 U					0.17 U	0.17 U	0.15 U
Aroclor-1221	0.15 U	0.14 U	0.13 U	0.15 U	0.14 U					0.17 U	0.17 U	0.15 U
Aroclor-1232	0.15 U	0.14 U	0.13 U	0.15 U	0.14 U					0.17 U	0.17 U	0.15 U
Aroclor-1242	0.15 U	0.14 U	0.13 U	0.45	0.46		••			0.58	0.57	0.51
Aroclor-1248	0.65	1.4	0.13 U	0.15 U	0.14 U			'		0.17 U	0.17 U	0.15 U
Aroclor-1254	0.15 U	0.14 U	0.13 U	0.15 U	0.20					0.24	0.25	0.22
Aroclor-1260	0.15 U	0.42	0.18	0.15 U	0.14 U					0.17 U	0.17 U	0.15 U
Aroclor-1268	0.15 U	0.14 U	0.13 U	0.15 U	0.14 U					0.17 U	0.17 U	0.15 U
Total PCBs	0.65	1.8	0.18	0.45	0.66					0.82	0.82	0.73
Metals												
Aluminum								** .				
Antimony												
Arsenic	15.5	40.4 .	100	9.6	7.9					9.0	13.9	11.0
Barium												
Beryllium										· 		· • • ·
Cadmium												·
Calcium												
Chromium	75.7	270	152	61.9	56.6					43.2	51:5	68.0
Cobalt					**							
Copper	J											

Sample ID	98323-08	98336-01	98336-02	99166-01	99166-02	99167-01	99168-01	99168-02	99168-03	99168-04	99168-05	99168-06
Location	SED-3.5C	CPT-8A	CPT-9A	SED-12	SED-9	VC-02	VC-06	VC-05	VC-06	SED-7	SED-7	SED-8
Date Sampled	11/19/98	12/2/98	12/2/98	6/15/99	6/15/99	6/16/99	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99
Sampling Depth	0	25	24	0	0	18	17	20	4	0	0	0
Iron								***				
Lead	111	292	. 323	81.3	73.2		•	•		- 70.0	67.2	93.4
Magnesium	4-	••				**					••	
Manganese												
Mercury						(**	-*			
Nickel								-	**			
Potassium					4-							
Selenium		**					**					
Silver												
Sodium	. 							•	••			
Thallium								•	•		**	
Vanadium											-	
Zinc									÷-			
Grain Size												
Percent Coarse Gravel				ND	ND					ND		ND
Percent Coarse Sand				0.10	0.020	<u></u>	**			0.040		0.040
Percent Fine Gravel				ND	ND				••	ND		0.0100
Percent Fine Sand				0.21	0.48			••		0.59		0.10
Percent Finer (0_001mm)				3.8	5.8		••			5.8		6.4
Percent Finer (0_002mm)				6.3	7.9					7.0		8.4
Percent Finer (0_003mm)				8.8	10.1				44	8.9		10.3
Percent Finer (0_005mm)			••	11.4	13.0					10.2		11.6
Percent Finer (0_006mm)				16.4	17.3					14.1		18.0
Percent Finer (0_009mm)				23.4	25.2					18.5		23.1
Percent Finer (0_012mm)				29.0	31.2					25.5		32.1
Percent Finer (0_016mm)				34.1	36.0			••	••	33.2		38.5
Percent Finer (0_021mm)				40.4	46.1					41.5		47.5
Percent Finer (0_029mm)				46.7	53.3					47.9		51.4
Percent Fines				99.5	99.5					99.3		99.7
Percent Medium Sand				0.15	ND					0.080		0.15
Percent Moisture				110	115					147		147
Total Organic Carbon		••		27900	29200					28400		33500
pH		·		8.3	8.1					7.5		7.8

Sample ID	99168-07	99168-08	99168-09	99168-10	99168-11	99169-03	99169-04	99169-05	99169-06	99169-07	99169-08	99169-09
Location	SED-10	SED-11	SED-13	SED-5	SED-6	SC-01	SC-01	SC-02	SC-02	SC-03	SC-03	SC-04
Date Sampled	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99
Sampling Depth	0	0	0	0	0	0	4	0	3	0	4	0
VOCs												
1,1,1-Trichloroethane												
1,1,2,2-Tetrachloroethane									**			
1,1,2-Trichloroethane		-										
1,1-Dichloroethane					è.				-			
1,1-Dichloroethene												
1,2-Dichloroethane												
1,2-Dichloropropane												
2,2'-oxybis(1-Chloropropane)												
2-Butanone (MEK)						***						
2-Hexanone												
4-Methyl-2-Pentanone					Á.				***			
Acetone		~-										
Benzene									~ -			
Bromodichloromethane												
Bromoform									***			
Bromomethane	4-	7.			: -		·		4.0			
Carbon Disulfide		. ~~				~~			4-			
Carbon Tetrachloride	**						••					'
Chloroethane			***									
Chloroform					4.11				40	84		
Chloromethane		-	•				-		***			
cis-1,2-Dichloroethene	•		-	~-			**		**			
cis-1,3-Dichloropropene					-							
Dibromochloromethane						••	1		**	84		
Dichloromethane (methylene chloride)	••	·				. 1		••	***			
Ethyl benzene								-	4.0	•		
Hexachloroethane									***			
Tetrachloroethene							4-	:	Jan pa			
Toluene			***					••				**
trans-1,2-Dichloroethene	**	**							- ^-			
trans-1,3-Dichloropropene												
Trichloroethene					**				•			
Vinyl Chloride					**							••
Xylenes (unspecified)					**			-	***			
Total VOCs								**	ŧ	••		

T.

Sample ID	99168-07	99168-08	99168-09	99168-10	99168-11	99169-03	99169-04	99169-05	99169-06	99169-07	99169-08	99169-09
Location .	SED-10	SED-11	SED-13	SED-5	SED-6	SC-01	SC-01	SC-02	SC-02	SC-03	SC-03	SC-04
Date Sampled	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99
Sampling Depth	0/1//99	0/1//99	0/1//99	0/1//99	0/1//99	0/18/99	4	0/18/99	3	0/18/99	4	0/10/99
PAHs	 			<u> </u>			7				7	- · ·
Acenaphthene	0.12 J	0.099 J	0.059 J	0.21 J	0.075 J	3.0	1.7	0.16 J	70.0	0.39 J	0.49 J	32.0
Acenaphthylene	0.35 J	0.035 J	0.03) J	0.38 J	0.073 J	1.0	1.6	0.16 J	3.4 J	0.38 J	0.47 J	3.9 J
Anthracene	0.42 J	0.31 J	0.24 J	1.2	0.30 J	4.0	2.9	0.50 J	140	0.77	0.90 J	44.0
Benzo(a)anthracene	0.72	0.51	0.40	0.86	0.49	3.5	4.7	1.0	210	2.1	2.7	18.0
Benzo(a)pyrene	0.88	0.64	0.53	1.0	0.61	2.8	4.6	1.3	190	2.5	3.0	13.0
Benzo(b)fluoranthene	1.0	0.68	0.60	1.3	0.75	3.7	5.3	1.7	220	3.6	4.3	20.0
Benzo(g,h,i)perylene	0.49 J	0.37 J	0.29 J	0.52 J	0.75 0.28 J	0.93	2.3	0.49 J	110	0.91	1.0 J	4.0 J
Benzo(k)fluoranthene	0.45	0.28	0.22	0.63	0.31	1.7	2.4	0.90	96.0	1.6	1.8	7.2
Chrysene	0.92	0.64 J	0.47 J	0.95	0.67 J	3.3	4.8	1.0	220	2.7	3.2	18.0
dibenzo(a,h)anthracene												
Fluoranthene	1.4	0.90	0.60 J	1.5	0.85	13.0	9.7	1.9	520	0.017 J	5.3	70.0
Fluorene	0.14 J	0.12 J	0.077 J	0.31 J	0.084 J	1.7	1.4	0.16 J	73.0	0.35 J	0.45 J	36.0
Indeno(1,2,3-cd)pyrene	0.50	0.35	0.29	0.56	0.29	1.0	2.4	0.53	110	1.1	1.1	5.1
Naphthalene	0.16 J	0.19 J	0.082 J	0.53 J	0.11 J	1.2	1.4	0.17 J	31.0	0.26 J	0.34 J	24.0
Phenanthrene	0.68 J	0.69 J	0.33 J	1.0	0.46 J	3.9	6.3	1.0	560	2.2	3.1	88.0
Pyrene	1.4	0.84	0.70	1.5	0.83	8.6	7.7	1.8	450	5.2	5.1	54.0
Total PAHs	9.6	6.9	5.1	12.4	6.3	53.3	59.2	13.0	3000	24.1	33.2	437
PCBs												
Aroclor-1016	0.16 U	0.15 U	0.14 U	0.15 U	0.16 U	0.18 U	0.13 U	0.14 U	0.12 U	0.15 U	0.14 U	0.15 U
Aroclor-1221	0.16 U_	0.15 U	0.14 U	0.15 U	0.16 U	0.18 U	0.13 U	0.14 U	0.12 U	0.15 U	0.14 U	0.15 U
Aroclor-1232	0.16 U	0.15 U	0.14 U	0.15 U	0.16 U	0.18 U	0.13 U	0.14 U	0.12 U	0.15 U	0.14 U	0.15 U
Aroclor-1242	0.64	0.49	0.50	0.56	0.48	0.75	0.13 U	0.72	0.20	2.2	0.72	0.65
Aroclor-1248	0.16 U	0.15 U	0.14 U	0.15 U	0.16 U	0.18 U	0.13 U	0.14 U	0.12 U	0.15 U	0.14 U	0.15 U
Aroclor-1254	0.28	0.22	0.23	0.26	0.21	0.51	0.13 U	0.42	0.12 U	1.0	0.43	0.63
Aroclor-1260	0.16 U	0.15 U	0.14 U	0.15 U	0.16 U	0.27	0.13 U	0.19	0.12 U	0.25	0.24	0.30
Aroclor-1268	0.16 U	0.15 U	0.14 U	0.15 U	0.16 U	0.18 U	0.13 U	0.14 U	0.12 U	0.15 U	0.14 U	0.15 U
Total PCBs	0.92	0.71	0.73	0.82	0.69	1.5	0.0	1.3	0.20	3.5	1.4	1.6
Metals												
Aluminum				-								
Antimony										0 10		
Arsenic	11.5	9.4	6.7	25.3	11.4	984	801	46.2	673	122	57.1	2150
Barium								~• .			••	**
Beryllium												••
Cadmium	••							••		pe.		
Calcium		-										
Chromium	69.3	63.4	58.0	64.2	47.4	99.2	89.8	84.7	61.1	160	94.8	98.0
Cobalt							***	~=				
Copper										**		

Sample ID	99168-07	99168-08	99168-09	99168-10	99168-11	99169-03	99169-04	99169-05	99169-06	99169-07	99169-08	99169-09
Location	SED-10	SED-11	SED-13	SED-5	SED-6	SC-01	SC-01	SC-02	SC-02	SC-03	SC-03	SC-04
Date Sampled	6/17/99	6/17/99	6/17/99	6/17/99	6/17/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99
Sampling Depth	0	0	0	0	0	0	4	0	3	0	4	0
Iron												
Lead	92.4	81.1	· 73.8	102	62.9	1540	780	115	586	202_	128	1520
Magnesium			٠			•	·					
Manganese			4-									
Mercury			•			***						
Nickel			;									
Potassium		-	•					4.	**			
Selenium			••		4-							
Silver	**											
Sodium			•-		•	••						
Thallium							***	••				**
Vanadium				••								
Zine			444		**	**						
Grain Size											•	
Percent Coarse Gravel	ND	ND	ND	ND	ND			ND				
Percent Coarse Sand	0.030	0.060	0.080	0.060	0.020			0.020				
Percent Fine Gravel	0.12	. 0.080	0.030	ND-	ND			ND				
Percent Fine Sand	0.13	2.7	3.4	0.23	1.5			0.090				••
Percent Finer (0_001mm)	5.6	5.3	4.1	5.1	4.0	••	-	5.0				**
Percent Finer (0_002mm)	9.7	7.3	6.8	8.2	6.0			7.5			**	**
Percent Finer (0_003mm)	11.1	9.9	8.2	10.1	8.0			8.8				-2
Percent Finer (0_005mm)	13.2	11.2	9.5	12.7	9.9			10.6				
Percent Finer (0_006mm)	19.5	17.2	12.3	17.7	14.6			16.2				
Percent Finer (0_009mm)	25.7	23.1	19.8	24.7	20.6			24.4		-	4-	
Percent Finer (0_012mm)	34.8	30.4	27.2	31.6	26.5	44	-	33.7				
Percent Finer (0_016mm)	44.5	35.7	31.3	41.8	31.9		-	42.5	-	***		
Percent Finer (0_021mm)	50.0	43.6	38.1	49.4	38.5			51.2		**	**	
Percent Finer (0_029mm)	58.4	48.8	42.2	58.2	45.1		••	60.0				
Percent Fines	99.7	97.1	96.4	99.5	98.5			99.9				
Percent Medium Sand	0.040	0.080	0,12	0.18	0.070		•-	ND	**			
Percent Moisture	124	115	96.3	105	110			109				
Total Organic Carbon	34200	25500	25900	33300	21600			33400				
рН	7.9	7.8	7.8	7.8	7.6			7.6				

Sample ID	99169-10	99169-11	99169-12	99169-13	99169-14	99169-15	99170-01	99170-02	99170-03	99170-04	99170-05	99170-06
Location	SC-04	SC-05	SC-05	SC-05	SC-06	SC-06	SC-07	SC-07	SC-08	SC-08	SC-09	SC-09
Date Sampled	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99
Sampling Depth	4	0	4	4	0	4	0	4	0	2	0	4
VOCs												
1,1,1-Trichloroethane												
1,1,2,2-Tetrachloroethane		**										
1,1,2-Trichloroethane												
1,1-Dichloroethane									'			
1,1-Dichloroethene									,			
1,2-Dichloroethane		**					**		**			
1,2-Dichloropropane												
2,2'-oxybis(1-Chloropropane)										*-		
2-Butanone (MEK)					~~						;	
2-Hexanone	·											
4-Methyl-2-Pentanone									**			
Acetone												
Benzene						4						
Bromodichloromethane							•	4	**	- -		
Bromoform				-	**		•					
Bromomethane					•	-	1	-		, are		
Carbon Disulfide	••	-	•				•	1				
Carbon Tetrachloride	·				••						•	
Chloroethane										-		
Chloroform									••			
Chloromethane									-	-	•	
cis-1,2-Dichloroethene	••	~~							46	1	•	
cis-1,3-Dichloropropene		·								-	•	
Dibromochloromethane												
Dichloromethane (methylene chloride)		40		*-								
Ethyl benzene							**					
Hexachloroethane												
Tetrachloroethene										**		
Toluene												
trans-1,2-Dichloroethene												
trans-1,3-Dichloropropene												
Trichloroethene												
Vinyl Chloride	~-					<i>,</i>						
Xylenes (unspecified)												••
Total VOCs										-		

Sample ID	99169-10	99169-11	99169-12	99169-13	99169-14	99169-15	99170-01	99170-02	99170-03	99170-04	99170-05	99170-06
Location	SC-04	SC-05	SC-05	SC-05	SC-06	SC-06	SC-07	SC-07	SC-08	SC-08	SC-09	SC-09
Date Sampled	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99
Sampling Depth	4	0	4	4	0	4	0	4 -	0	2	0	4
PAHs												
Acenaphthene	1200	1.9	3.6	3.7	0.18 J	0.18 J	0.39 J	15.0	0.076 J	0.11 J	0.10 J	14.0
Acenaphthylene	76.0 J	0.87 J	0.88 J	2.2	0.38 J	0.36 J	0.36 J	3.3 J	0.29 J	0.34 J	0.43 J	2.8 J
Anthracene	3600	4.3	4.2	19.0	0.67 J	0.47 J	0.63 J	22.0	0.26 J	0.38 J	0.32 J	12.0
Benzo(a)anthracene	280	3.1	3.8	7.9	1.0	0.97	1.5	15.0	0.61	0.89	0.94	13.0
Benzo(a)pyrene	110	2.7	3.8	7.0	1.1	1.3	1.7	10.0	0.80	1.0	1.3	10.0
Benzo(b)fluoranthene	160	3.9	5.1	9.0	1.5	1.8	2.4	11.0	1.2	_ 1.4	1.9	14.0
Benzo(g,h,i)perylene	50.0 J	0.76 J	1.6	2.0	0.36 J	0.45 J	0.46 J	3.6 J	0.24 J	0.26 J	0.33 J	2.2 J
Benzo(k)fluoranthene	61.0	1.7	2.2	4.2	0.77	0.95	1.3	5.2	0.47	0.78	0.90	6.7
Chrysene	270	3.9	4.6	8.8	1.4	1.1 J	1.7	15.0	0.60 J	0.83	1.0	12.0
dibenzo(a,h)anthracene												
Fluoranthene	1500	8.8	13.0	24.0	2.3	2.7	3.1	46.0	1.2	1.8	1.8	40.0
Fluorene	1800	2.3	2.7	4.4	0.23 J	0.17 J	0.28 J	15.0	0.092 J	0.12 J	0.11 J	13.0
Indeno(1,2,3-cd)pyrene	58.0	0.93	1.8	2.5	0.44	0.61	0.57	4.2	0.28	0.30	0.41	3.1
Naphthalene	3700	2.8	0.64 J	1.0 J	0.19 J	0.15 J	0.15 J	3.2 J	0.097 J	0.14 J	0.099 J	13.0
Phenanthrene	3600	7.4	10.0	19.0	0.78	0.78 J	1.6	69.0	0.39 J	0.59 J	0.49 J	42.0
Pyrene	960⊧	7.7	10.0	- 20.0	2.2	2.5	3.2	.40.0	1.3	2.0	2.2	30.0
Total PAHs	17400	53.1	67.9	135	13.5	14.5	19.3	277	7.9	10.9	12.3	228
PCBs												
Aroclor-1016	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.13 U	0.14 U	0.14 U	0.15 U	0.70 U
Aroclor-1221	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.13 U	0.14 U	0.14 U	0.15 U	0.70 U
Aroclor-1232	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.13 U	0.14 U	0.14 U	0.15 U	0.70 U
Aroclor-1242	0.85	0.55	1.0	1.6	0.67 P	0.83 P	0.57	0.13 U	0.65 P	1.3	0.56 P	4.7
Aroclor-1248	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.13 U	0.14 U	0.14 U	0.15 U	0.70 U
Aroclor-1254	0.98	0.32	0.63	0.70	0.29	0.58	0.33	0.13 U	0.27	0.62	0.25	1.8
Aroclor-1260	0.45	0.22	0.31	0.35	0.16 U	0.47	0.14 U	0.24	0.14 U	0.24	0.15 U	0.70 U
Aroclor-1268	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U	0.15 U	0.14 U	0.13 U	0.14 U	0.14 U	0.15 U	0.70.U
Total PCBs	2.3	1.1	1.9	2.7	0.96	1.9	0.90	0.24	0.92	2.2	0.81	6.5
Metals												
Aluminum			••			<u> </u>						
Antimony												
Arsenic	1860	292	429	576	95.8	141	27.1	125	11.6	20.2	13.2	27.9
Barium												
Beryllium		~-										
Cadmium												
Calcium												
Chromium	139	74.8	127	118	76.6	128	77.0	137	69.9	169	80.0	218
Cobalt		4 .						**	 .			
Copper	<u> </u>				<u></u>						l	

Sample ID	99169-10	99169-11	99169-12	99169-13	99169-14	99169-15	99170-01	99170-02	99170-03	99170-04	99170-05	99170-06
Location	SC-04	SC-05	SC-05	SC-05	SC-06	SC-06	SC-07	SC-07	SC-08	SC-08	SC-09	SC-09
Date Sampled	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/18/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99
Sampling Depth	4	0	4	4	0	4	0 :	4	0	2	0	4
Iron												
Lead	542	254	194	169	107	158	118	241	92.7	198	106	220
Magnesium						·						
Manganese												
Mercury		•-							**			
Nickel		**								••		
Potassium		• •			••							
Selenium								`				
Silver						••			••			
Sodium		 ·.										
Thallium												••
Vanadium												
Zinc									<u>.</u> .			
Grain Size			·									
Percent Coarse Gravel			·		ND				ND		ND	
Percent Coarse Sand			**		ND				0.030		0.060	
Percent Fine Gravel					ND			-	ND	`	ND	
Percent Fine Sand					0.090				0.15		0.20	
Percent Finer (0_001mm)					4.6			**	3.0		5.0	
Percent Finer (0_002mm)				•-	7.7				5.9		10.0	• ••
Percent Finer (0_003mm)		, 		**	10.7		, ,		9.6		11.0	
Percent Finer (0_005mm)					13.0		·		11.9		14.0	
Percent Finer (0_006mm)					19.9				17.8		22.0	
Percent Finer (0_009mm)					28.4				23.0		29.0	
Percent Finer (0_012mm)					36.8				29.7		40.0	
Percent Finer (0_016mm)				**	44.5				38.6		48.0	
Percent Finer (0_021mm)					53.7				46.0		58.0	
Percent Finer (0_029mm)		••			61.4				54.9		64.0	••
Percent Fines					99.9				99.7		99.7	
Percent Medium Sand					ND				0.13		ND	
Percent Moisture					116				98.4		112	
Total Organic Carbon					35700			 , -	29000		34600	
рН					7.5				7.3		7.6	

Sample ID	99170-07	99170-08	99170-09	99170-10	99170-11	99170-12	99170-13	99170-14	99170-15	99170-16	99170-17	99170-18
Location	SC-10	SC-10	SC-11	SC-11	SC-12	SC-12	SC-13	SC-13	SC-13	SC-14	SC-14	SC-15
Date Sampled	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99
Sampling Depth	0	4	0	4	0	4	0	4	4	0	4	0
VOCs												
1,1,1-Trichloroethane							**		•-			
1,1,2,2-Tetrachloroethane												
1,1,2-Trichloroethane												
1,1-Dichloroethane					- -							
1,1-Dichloroethene											-	
1,2-Dichloroethane					•-							
1,2-Dichloropropane			**									
2,2'-oxybis(1-Chloropropane)				**								
2-Butanone (MEK)					***							
2-Hexanone												
4-Methyl-2-Pentanone		 .										
Acetone						•••						
Benzene									•••			
Bromodichloromethane						••			4.5			
Bromoform		••	-						1			
Bromomethane		·							••			~-
Carbon Disulfide						••	•		-			
Carbon Tetrachloride							•••					
Chloroethane							•-		**			**
Chloroform						••	**	· ••				
Chloromethane		••	••						. ••			
cis-1,2-Dichloroethene									-			1
cis-1,3-Dichloropropene					•-				••			**
Dibromochloromethane							**					**
Dichloromethane (methylene chloride)												
Ethyl benzene		••			·							
Hexachloroethane		-			••	**	**		•			-
Tetrachloroethene							••	•	-	•		-
Toluene												
trans-1,2-Dichloroethene												
trans-1,3-Dichloropropene												
Trichloroethene												
Vinyl Chloride												
Xylenes (unspecified)												
Total VOCs												

Sample ID	99170-07	99170-08	99170-09	99170-10	99170-11	99170-12	99170-13	99170-14	99170-15	99170-16	99170-17	99170-18
Location	SC-10	SC-10	SC-11	SC-11	SC-12	SC-12	SC-13	SC-13	SC-13	SC-14	SC-14	SC-15
Date Sampled	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99
Sampling Depth	0	4	0 .	4	0	4	0	4	4	0	4	0
PAHs												
Acenaphthene	0.077 J	0.067 J	3.8	16.0	0.77	2.0	0.27 Ј	0.078 J	0.094 J	0.66 J	3.2	0.18 J
Acenaphthylene	0.31 J	0.24 J	1.5 J	1.8 J	0.68 J	0.78	0.37 J	0.22 J	0.28 J	0.44 J	0.87 J	0.30 J
Anthracene	0.32 J	0.24 J	6.4	11.0	1.4	1.3	0.69 J	0.25 J	0.31 J	1.4	4.2	0.40 J
Benzo(a)anthracene	0.85	0.56	16.0	11.0	4.1	2.5	1.3	0.57	1.1	3.2	3.8	0.62
Benzo(a)pyrene	0.92	0.65	18.0	8.7	4.8	2.5	1.6	0.69	0.99	3.4	3.0	0.80
Benzo(b)fluoranthene	1.2	. 0.82	24.0	11.0	6.8	3.3	2.0	0.72	1.2	4.1	4.0	1.0
Benzo(g,h,i)perylene	0.30 J	0.32 J	4.8	3.7 J	1.0	0.76	0.54 J	0.41 J	0.37 J	1.1	1.9	0.46 J
Benzo(k)fluoranthene	0.52	0.28	9.7	4.7	3.0	1.5	0.89	0.32	0,57	1.8	1.8	0.51
Chrysene	0.93	0.53 J	17.0	12.0	4.4	. 2,2	1.4	0.66 J	1.1	3.3	4.3	0.92
dibenzo(a,h)anthracene		••				**						
Fluoranthene	1.7	1.2 J	36.0	36.0	8.3	8.9	2.5	1.1	2.1	7.2	12.0	2.4
Fluorene	0.11 J	0.084 J	2.3 J	11.0	0.53 J	0.56 J	0.22 J	0.089 J	0.10 J	0.59 J	3.2	0.20 J
Indeno(1,2,3-cd)pyrene	0.39	0.34	6.3	3.8	1.3	0.86	0.63	0.39	0.36	1.2	1.8	0.45
Naphthalene	0.081 J	0.12 J	1.7 J	2.5 J	0.36 J	0.41 J	0.19 J	0.055 J	0.10 J	0.78	4.5	0.19 J
Phenanthrene	0.73 J	0.39 J	17.0	48.0	3.8	2.6	1.8	0.57 J	0.67 J	4.7	14.0	2.3
Pyrene	1.6	1.2 J	33.0	30.0	8.3	5.0	2.2	1.1	1.6	5.7	9.3	1.7
Total PAHs	10.0	7.0	198	211	49.5	35.2	16.6	7.2	10.9	39.6	71.9	12.4
PCBs												
Aroclor-1016	0,16 U	0.14 U	0.12 U	0.12 U	0.15 U	0.13 U	0.14 U	0.13 U	0.14 U	0.14 U	0.12 U	0.15 U
Aroclor-1221	0.16 U	0.14 U	0.12 U	0.12 U	0.15 U	0.13 U	0.14 U	0.13 U	0.14 U	0.14 U	0.12 U	0.15 U
Aroclor-1232	0.16 U	0.14 U	0.12 U	0.12 U	0.15 U	0.13 U	0.14 U	0.13 U	0.14 U	0.14 U	0.12 U	0.15 U
Aroclor-1242	0.52 P	0.75	0.40	0.78	0.59	0.84	0.56	0.67	0.65	0.62 P	0.12 U	0.65
Aroclor-1248	0.16 U	0.14 U	0.12 U	0.12 U	0.15 U	0.13 U	0.14 U	0.13 U	0.14 U	0.14 U	0.12 U	0.15 U
Aroclor-1254	0.21	0.36	0.38 P	0.60	0.30	0.45	0.37	0.35	0.34	0.43	0.24	0.15 U
Aroclor-1260	0.16 U	0.14 U	0.12 U	0.26	0.21	0.23	0.39	0.19	0.14 U	0.22	0.12 U	0.15 U
Aroclor-1268	0.16 U	0.14 U	0.12 U	0.12 U	0.15 U	0.13 U	0.14 U	0.13 U	0.14 U	0.14 U	0.12 U	0.15 U
Total PCBs	0.73	1.1	0.78	1.6	1.1	1.5	1.3	1.2	0.99	1.3	0.24	0.65
Metals												
Aluminum												/
Antimony									**		÷=	
Arsenic	15.6	15.7	38.5	28.9	16.0	15.7	13.1	15.7	-15.1	53.6	187	28.9
Barium	••											
Beryllium												
Cadmium												
Calcium												
Chromium	68.6	121	74.4	107	71.4	125	66.4	108	108	93.9	67.4	88.2
Cobalt												
Copper												

Sample ID	99170-07	99170-08	99170-09	99170-10	99170-11	99170-12	99170-13	99170-14	99170-15	99170-16	99170-17	99170-18
Location	SC-10	SC-10	SC-11	SC-11	SC-12	SC-12	SC-13	SC-13	SC-13	SC-14	SC-14	SC-15
Date Sampled	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99	6/19/99
Sampling Depth	0	4	. 0	4	0	4	0	4	4	0	4	0
Iron		, 			**							
Lead	91.6	147	208	388	858	207	150	140	141	140	285	116
Magnesium				••								
Manganese					**	••						
Mercury											**	
Nickel	~~				:					••		
Potassium					~~							
Selenium				••								
Silver			••						~-			
Sodium							••					
Thallium									. 			
Vanadium						'						••
Zinc			••		••		••					
Grain Size												
Percent Coarse Gravel				••	ND					ND		
Percent Coarse Sand					0.12					2.3		
Percent Fine Gravel					0.67	٠				0.51		
Percent Fine Sand					2.9					6.8		
Percent Finer (0_001mm)	**				3.7				••	3.2		
Percent Finer (0_002mm)					8.3					5.2		
Percent Finer (0_003mm)					8.3					7.1		
Percent Finer (0_005mm)			~•		9.2					7.8		
Percent Finer (0_006mm)					16.5					11.7		
Percent Finer (0_009mm)	**				26.6					21.4		
Percent Finer (0_012mm)					33.0					28.5		
Percent Finer (0_016mm)					40.4					36.3		
Percent Finer (0_021mm)				**	49.5		~*			42.8	••	
Percent Finer (0_029mm)					56.9					50.6		
Percent Fines					95.8					83.8		
Percent Medium Sand					0.51			**		6.6		
Percent Moisture					107					103		
Total Organic Carbon					38800					36500		
рН				!	7.7					7.9		

r. .

Sample ID	99170-19	99170-20	99170-21	QRC-1	QRC-10	QRC-11	QRC-12	QRC-13	QRC-14	QRC-15	QRC-16	QRC-17
Location	SC-15	SC-16	SC-16	QRC-01	QRC-10	QRC-11	QRC-12	QRC-13	QRC-14	QRC-15	QRC-16	QRC-17
Date Sampled	6/19/99	6/19/99	6/19/99	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95
Sampling Depth	4	0	4	••								
VOCs												
1,1,1-Trichloroethane												
1,1,2,2-Tetrachloroethane								••	••	í. 		
1,1,2-Trichloroethane								· `				••
1,1-Dichloroethane		••						••				
1,1-Dichloroethene												
1,2-Dichloroethane												
1,2-Dichloropropane							.					
2,2'-oxybis(1-Chloropropane)				ND	ND	ND	ND	ND	· ND	ND	ND	ND
2-Butanone (MEK)												
2-Hexanone		**		**		**		••				
4-Methyl-2-Pentanone	**		-					••	-			
Acetone			1			-		•	**			
Benzene		•	•		~~	••	•		-			
Bromodichloromethane		-1							,	••		
Bromoform	••		4				•	-			***	
Bromomethane	••	**		**	.,			- 4				
Carbon Disulfide						-		•				**
Carbon Tetrachloride	**							1				
Chloroethane						•						
Chloroform			**			`						••
Chloromethane		••			**							
cis-1,2-Dichloroethene												
cis-1,3-Dichloropropene												
Dibromochloromethane					**							
Dichloromethane (methylene chloride)												
Ethyl benzene			4	4		•		**				
Hexachloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		••	••	••				•				
Toluene		'										
trans-1,2-Dichloroethene											***	
trans-1,3-Dichloropropene						·	<u>.</u>					
Trichloroethene										-		
Vinyl Chloride												
Xylenes (unspecified)	**											
Total VOCs	,											

TA

December Sec. Sec		,				· · · · · · · · · · · · · · · · · · ·	,			,			γ
Date Sampled 6/19/99 6/19/99 6/19/99 6/19/95 6/16/95	Sample ID	99170-19	99170-20	99170-21	QRC-1	QRC-10	QRC-11	QRC-12	QRC-13	QRC-14	QRC-15	QRC-16	QRC-17
Sampling Depth	Location												
Accessphethene	Date Sampled				6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95
Accesaphthylene 6.3	Sampling Depth	4	0	4									
Accessphilylene 1.8 J 0.40 J 0.23 J ND ND ND ND ND ND ND	PAHs	<u> </u>											
Anthracene 8.0 0.44.1 0.32.3 ND ND ND ND 0.77 ND ND ND ND ND Perzo(a)pyrene 5.9 0.96 0.58 ND	Acenaphthene	6.3	0.16 J	0.18 J	ND		ND		0.40 J				ND
Benzo(a)anchracene	Acenaphthylene	1.8 J	0.40 J						0.18				ND
Senzo(a)pyrene	Anthracene								0.77				
Benzo(b)fluoranthene 5.2	Benzo(a)anthracene			0.58			ND	ND	1.1		ND	ND	ND
Benzo(g,h,i)perylene	Benzo(a)pyrene	4.3	1.2	0.64				ND	0.86	ND	ND		
Benzo(k)fluoranthene 2.7 0.83 0.33 ND ND ND ND 0.521 ND ND ND ND	Benzo(b)fluoranthene	5.2	1.6	0.75			ND	ND	1.0	ND	ND	ND	ND
Chrysene 6.5 1.0 0.69J ND 0.25J ND 0.23J 1.2 ND	Benzo(g,h,i)perylene	2.4 J	0.38 J	0.30 J	ND		ND	ND	0.47 J	ND	ND	ND	ND .
Sibenzo(a,h)anthracene	Benzo(k)fluoranthene	2.7	0.83	0.33	ND	ND		ND	0.52 J	ND	ND	ND .	ND
Property 18.0 1.5 1.4 ND 0.51 0.45 0.60 2.9 ND ND ND ND ND ND ND N	Chrysene	6.5	1.0	0.69 J	ND		ND .	0.23 J	1.2	ND	ND	ND	ND
Protect Prot	dibenzo(a,h)anthracene				ND	ND	ND	ND		ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene 2.4 0.45 0.32 ND ND ND ND ND ND ND N	Fluoranthene	18.0	1.5	1.4		0.51 J	0.45 J	0.60 J	2.9	ND		ND	ND
Naphthalene 6.3 0.12 0.14 ND 0.33 ND ND ND ND ND ND ND	Fluorene	7.0	0.12 J	0.13 J	ND	ND	ND	ND	0.56	ND	ND	ND	ND
Phenanthrene	Indeno(1,2,3-cd)pyrene	2.4	0.45	0.32	ND	ND	ND	ND			ND	ND	ND
Pyrene 15.0 1.7 1.3 ND 0.28 J 0.25 J 0.32 J 1.9 ND ND ND ND ND PC04 PAHS 121 11.6 7.9 0.0 1.7 0.70 1.5 15.0 0.0 0.0 0.0 0.0 0.0 0.0 PCB	Naphthalene	6.3	0.12 J	0.14 J				ND		ND	ND	ND	ND
Total PAHs	Phenanthrene	29.0	0.76	0.64 J	ND	0.36 J	ND .	0.35 J	2.7	ND	ND	ND	ND
PCBs Aroclor-1016 0.14 U 0.15 U 0.15 U	Pyrene	15.0	1.7.	1.3	ND	0.28 J	0.25 J	0.32 J	1.9	ND	ND	ND	ND
Aroclor-1016 Aroclor-1221 O.14 U O.15 U O.	Total PAHs	121	11.6	7.9	0.0	1.7	0.70	1.5	15.0	0.0	0.0	0.0	0.0
Aroclor-1221	PCBs									_	-		
Arcolor-1232	Aroclor-1016	0.14 U	0.15 U	0.15 U		**						4.0	
Aroclor-1242	Aroclor-1221	0.14 U	0.15 U	0.15 U								••	
Aroclor-1248	Aroclor-1232	0.14 U	0.15 U	0.15 U									
Aroclor-1254 0.27 0.15 U 0.65	Aroclor-1242	0.14 U	0.57	1.9								-	
Aroclor-1260	Aroclor-1248	0.14 U	0.15 U	0.15 U				•				~=	
Aroclor-1268 0.14 U 0.15 U 0.15 U	Aroclor-1254	0.27	0.15 U	0.65									
Metals	Aroclor-1260	0.14 U	0.15 U	0.20						••			
Metals <	Aroclor-1268	0.14 U	0.15 U	0.15 U		•							
Aluminum	Total PCBs	0.27	0.57	2,7									
Antimony Arsenic 112 17.4 16.8	Metals												
Arsenic 112 17.4 16.8	Aluminum											-	
Arsenic 112 17.4 16.8	Antimony					••	. ••						
Barium <td< td=""><td>Arsenic</td><td>112</td><td>17.4</td><td>16.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>**</td><td></td></td<>	Arsenic	112	17.4	16.8								**	
Cadmium	Barium			**	••	••							
Cadmium	Beryllium												
Calcium	Cadmium												
Chromium 152 74.3 156	Calcium												
Cobalt	Chromium	152	74.3	156						·			
─────	Cobalt												
	Copper											•	

Sample ID	99170-19	99170-20	99170-21	QRC-1	QRC-10	QRC-11	QRC-12	QRC-13	QRC-14	QRC-15	QRC-16	QRC-17
Location	SC-15	SC-16	SC-16	QRC-01	QRC-10	QRC-11	QRC-12	QRC-13	QRC-14	QRC-15	QRC-16	QRC-17
Date Sampled	6/19/99	6/19/99	6/19/99	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95
Sampling Depth	` 4	0	4				**		~-			
Iron												、
Lead	358	105	188	*-								
Magnesium									4-	·		
Manganese						**						
Mercury												
Nickel									*-			••
Potassium									~~		••	·
Selenium										·	/ 	
Silver				**								
Sodium											••	
Thallium	*-			**								
Vanadium				4-								\
Zinc				·			**					
Grain Size												<u> </u>
Percent Coarse Gravel							**		**			
Percent Coarse Sand												
Percent Fine Gravel					••							
Percent Fine Sand				••		••						
Percent Finer (0_001mm)												
Percent Finer (0_002mm)												
Percent Finer (0_003mm)			<u>.</u>									
Percent Finer (0_005mm)												
Percent Finer (0_006mm)												
Percent Finer (0_009mm)									***			
Percent Finer (0_012mm)												
Percent Finer (0_016mm)	,											·
Percent Finer (0_021mm)							••		**			
Percent Finer (0_029mm)		**										
Percent Fines												
Percent Medium Sand									~-			
Percent Moisture												
Total Organic Carbon												
pН												

Sample ID	QRC-18	QRC-2	QRC-20	QRC-24	QRC-3	QRC-4	QRC-5	QRC-6	QRC-7	QRC-8	QRC-9	SED-1
Location	QRC-18	QRC-02	QRC-20	QRC-24	QRC-03	QRC-04	QRC-05	QRC-06	QRC-07	QRC-08	QRC-09	SED-01
Date Sampled	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	3/27/98
Sampling Depth												
VOCs												
1,1,1-Trichloroethane												
1,1,2,2-Tetrachloroethane												
1,1,2-Trichloroethane												'
1,1-Dichloroethane												••
1,1-Dichloroethene			**				••		` ••			
1,2-Dichloroethane												
1,2-Dichloropropane		***										
2,2'-oxybis(1-Chloropropane)	ND											
2-Butanone (MEK)											 ,	
2-Hexanone								•-				
4-Methyl-2-Pentanone					**	**					**	
Acetone												
Benzene		**	••			**						
Bromodichloromethane			••			••	***					
Bromoform												
Bromomethane	•• .											
Carbon Disulfide								••			u	••
Carbon Tetrachloride		••							••			
Chloroethane							•	**				
Chloroform			••		••						••	
Chloromethane	••				-		•	•			•	
cis-1,2-Dichloroethene			••	••		-						
cis-1,3-Dichloropropene							**	-				
Dibromochloromethane		••		•								
Dichloromethane (methylene chloride)		•••		~-				-				
Ethyl benzene	•						,	•	••	-		
Hexachloroethane	ND	••										
Tetrachloroethene												
Toluene					••	••	••				••	
trans-1,2-Dichloroethene				••								
trans-1,3-Dichloropropene							**	- ·				
Trichloroethene												••
Vinyl Chloride			**			Me .						
Xylenes (unspecified)	4-											
Total VOCs			-				**				,	

ТΔ

Sample ID	ORC-18	ORC-2	QRC-20	QRC-24	QRC-3	QRC-4	QRC-5	QRC-6	QRC-7	QRC-8	QRC-9	SED-1
Location	QRC-18	QRC-02	QRC-20	ORC-24	QRC-03	QRC-04	QRC-05	QRC-06	QRC-07	QRC-08	ORC-09	SED-01
Date Sampled	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	3/27/98
Sampling Depth				0,10,75	0/10/25							3/2///0
PAHs												
Acenaphthene	ND	0.40 J										
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND -	ND	ND	ND	ND	
Anthracene	ND	0.31 J										
Benzo(a)anthracene	ND	0.53 J										
Benzo(a)pyrene	ND	0.53 J										
Benzo(b)fluoranthene	ND	0.58 J	·									
Benzo(g,h,i)perylene	ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND	0.32 J	
Benzo(k)fluoranthene	ND	ND	ND	ND	- ND	ND	ND	ND	ND	ND	0.30 J	
Chrysene	ND	0.65 J										
dibenzo(a,h)anthracene	ND	· ND										
Fluoranthene	ND	1.7 J										
Fluorene	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	0.29 J	
Indeno(1,2,3-cd)pyrene	ND	0.28 J										
Naphthalene	ND	1.7 J										
Phenanthrene	ND	ND	ND	ND	ND	ND .	ND	, ND	ND	ND	1.2 J	
Pyrene	ND	. ND	ND	ND	ND	ND	ND -	ND	ND-	ND	0.94 J	
Total PAHs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.7	
PCBs						·		,				
Aroclor-1016			·									
Aroclor-1221		••				1				<u>-</u> -		
Aroclor-1232												
Aroclor-1242												
Aroclor-1248										-		
Arocior-1254												
Aroclor-1260												
Aroclor-1268				••								
Total PCBs												
Metals												
Aluminum		-			**			••				13500 J
Antimony												ND
Arsenic		•				•			**			17.6 J
Barium												72.4 BJ
Beryllium									-			0.74 BJ
Cadmium												1.1 BJ
Calcium										٠.		5370 J
Chromium			**	••						-		66.1 J
Cobalt										••		12.2 BJ
Copper								••				136 J

Sample ID	QRC-18	QRC-2	QRC-20	QRC-24	QRC-3	QRC-4	QRC-5	QRC-6	QRC-7	QRC-8	QRC-9	SED-1
Location	QRC-18	QRC-02	QRC-20	QRC-24	QRC-03	QRC-04	QRC-05	QRC-06	QRC-07	QRC-08	QRC-09	SED-01
Date Sampled	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	6/16/95	3/27/98
Sampling Depth			4-	••								
Iron		**										30200 J
Lead							· 					127 Ј
Magnesium			۹.									7210 J
Manganese	-		**			••						877 J
Mercury	4	4									-	2.3 J
Nickel	-		•								4	40.1 J
Potassium			-			,					••	2810 BJ
Selenium	•		••				•		••			ND
Silver												4.2 BJ
Sodium			4-						·	 ,		7940 J
Thallium						**				. 4=		ND
Vanadium											***	32.9 J
Zinc						·						248 J
Grain Size										•		
Percent Coarse Gravel			***									
Percent Coarse Sand												
Percent Fine Gravel		a.c										
Percent Fine Sand												
Percent Finer (0_001mm)												••
Percent Finer (0_002mm)												•• .
Percent Finer (0_003mm)												
Percent Finer (0_005mm)												
Percent Finer (0_006mm)							**					
Percent Finer (0_009mm)												
Percent Finer (0_012mm)				••								
Percent Finer (0_016mm)												
Percent Finer (0_021mm)	·											
Percent Finer (0_029mm)												
Percent Fines							**					••
Percent Medium Sand												
Percent Moisture								:			24	
Total Organic Carbon					**			 ,				
рН			٠									

Sample ID	SED-2	SED-3	SED-4	SED-5	SED-6
Location	SED-02	SED-03	SED-04	SED-05	SED-06
Date Sampled	3/27/98	3/27/98	3/27/98	3/27/98	3/27/98
Sampling Depth					
VOCs					
1,1,1-Trichloroethane					
1,1,2,2-Tetrachloroethane					
1,1,2-Trichloroethane					
1,1-Dichloroethane				**	
1,1-Dichloroethene				**	
1,2-Dichloroethane					
1,2-Dichloropropane					
2,2'-oxybis(1-Chloropropane)			·		
2-Butanone (MEK)					
2-Hexanone					
4-Methyl-2-Pentanone					
Acetone		••			
Benzene					
Bromodichloromethane					
Bromoform					
Bromomethane	- ••				
Carbon Disulfide					
Carbon Tetrachloride					
Chloroethane					
Chloroform					
Chloromethane			***		
cis-1,2-Dichloroethene					••
cis-1,3-Dichloropropene	••				
Dibromochloromethane				-	
Dichloromethane (methylene chloride)	-				
Ethyl benzene					
Hexachloroethane					•
Tetrachloroethene					
Toluene					
trans-1,2-Dichloroethene					
trans-1,3-Dichloropropene					<u></u> ,
Trichloroethene					
Vinyl Chloride					
Xylenes (unspecified)					
Total VOCs					

Sample ID	SED-2	SED-3	SED-4	SED-5	SED-6
Location	SED-02	SED-03	SED-04	SED-05	SED-06
Date Sampled	3/27/98	3/27/98	3/27/98	3/27/98	3/27/98
Sampling Depth					
PAHs					
Acenaphthene					
Acenaphthylene					
Anthracene					
Benzo(a)anthracene	***				
Benzo(a)pyrene			·		
Benzo(b)fluoranthene					
Benzo(g,h,i)perylene					
Benzo(k)fluoranthene			••		
Chrysene		••			
dibenzo(a,h)anthracene					
Fluoranthene		••			
Fluorene				••	
Indeno(1,2,3-cd)pyrene					
Naphthalene					
Phenanthrene	1				 .
Pyrene					
Total PAHs					
PCBs		<u></u>			
Aroclor-1016					
Aroclor-1221					
Aroclor-1232					**
Aroclor-1242					
Aroclor-1248					
Aroclor-1254					
Aroclor-1260				**	
Aroclor-1268					
Total PCBs	<u> </u>		**		
Metals	ļ				
Aluminum	14400 J	16800 J	16500 J	13900 J	15800 J
Antimony	ND	ND	ND	ND	ND
Arsenic	17.0 J	116 J	126 J	14.1 J	15.0 J
Barium	62.4 BJ	76.3 BJ	79.8 BJ	56.1 BJ	67.5 BJ
Beryllium	0.76 BJ	0,96 BJ	0.98 BJ	0.71 BJ	0.80 BJ
Cadmium	1.2 BJ	1.1 BJ	1.8 BJ	0.65 BJ	0.84 BJ
Calcium	27200 J	6460 J	6220 J	4460 J	ND
Chromium	81.0 J	103 J	104 J	59.7 J	61.3 J
Cobalt	12.6 BJ	17.3 BJ	16.8 BJ	12.0 BJ	11.7 BJ
Copper	ND	ND	ND	76.5 J	ND

TAL.
SEDIMENT SAMPLING RESULTS [mg/kg]
QUANTA RESOURCES SITE, EDGEWATER, NEW JERSEY

Sample ID	SED-2	SED-3	SED-4	SED-5	SED-6
Location	SED-02	SED-03	SED-04	SED-05	SED-06
Date Sampled	3/27/98	3/27/98	3/27/98	3/27 <i>1</i> 98	3/27/98
Sampling Depth					
Iron	34600 J	42500 J	41500 J	29200 J	30100 J
Lead	127 Ј	135 J	142 J	83.5 J	96.5 J
Magnesium	11100 J	9100 J	8920 J	7050 J	7630 J
Manganese	569 J	2050 J	2050 J	1150 J	1280 J
Mercury	1.3 J	1.1 J	1.9 J	1.3 J	0.84 J
Nickel	29.3 J	36,9 J	36.5 J	29.0 J	32.1 J
Potassium	2910 BJ	3420 BJ	3560 BJ	2840 BJ	3430 J
Selenium	ND	ND	ND	ND	ND
Silver	4.2 BJ	7.0 BJ	6.3 BJ	3.9 BJ	3.6 BJ
Sodium	6830 J	7630 J	8600 J	6390 J	7930 J
Thallium	ND	ND	ND	ND	ND
Vanadium	34.7 J	44.2 J	43.3 BJ	30.9 BJ	32.5 BJ
Zinc	229 Ј	ND	ND_	177 J	273 Ј
Grain Size					
Percent Coarse Gravel					
Percent Coarse Sand					
Percent Fine Gravel					
Percent Fine Sand					
Percent Finer (0_001mm)					'
Percent Finer (0_002mm)				'	
Percent Finer (0_003mm)		4-		-	
Percent Finer (0_005mm)			4	1	
Percent Finer (0_006mm)		***		**	
Percent Finer (0_009mm)				••	1
Percent Finer (0_012mm)					
Percent Finer (0_016mm)					
Percent Finer (0_021mm)		-			
Percent Finer (0_029mm)		••	••		**
Percent Fines		••			4.
Percent Medium Sand		-		**	***
Percent Moisture	**				
Total Organic Carbon		~-			
рН		~=	**		

⁻⁻ indicates the constituent was not analyzed in the sample

ND indicates the constituent was reported as non detect in the sample without information about the reporting limit being provided

U indicates the constituent was reported as non detect in the sample; the value presented represents the reporting limit

I indicates the concentration was estimated in the sample

B indicates the constituent was present below the reporting limit

TABLE 3 Surface Sediment Sample Basic Physical and Chemical Results Quanta Resources Site, Edgewater, New Jersey

	Location	SED-5	SED-6	SED-7	SED-8	SED-9	SED-10	SED-11	SED-12	SED-13
Date	Sampled	17-Jun-99	17-Jun-99	17-Jun-99	17-Jun-99	15-Jun-99	17-Jun-99	17-Jun-99	15-Jun-99	17-Jun-99
S	ample ID	99168-10	99168-11	99168-04	99168-06	99166-02	99168-07	99168-08	99166-01	99168-09
	Depth (ft)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Parameter	Units			`						
Percent Coarse Gravel	%	0	0	0	0	0	0	0	0	0
Percent Fine Gravel	%	0	0	0	0.0100	0	0.12	0.080	0	0.030
Percent Coarse Sand	%	0.060	0.020	0.040	0.040	0.020	0.030	0.060	0.10	0.080
Percent Medium Sand	%	0.18	0.070	0.080	0.15	0	0.040	0.080	0.15	0.12
Percent Fine Sand	%	0.23	1.5	0.59	0.10	0.48	0.13	2.7	0.21	3.4
Percent Fines	%	99.5	98.5	99.3	99.7	99.5	99.7	97.1	99.5	96.4
Percent Finer (0.001mm)	%	5.1	4.0	5.8	6.4	5.8	5.6	5.3	3.8	4.1
Percent Finer (0.002mm)	%	8.2	6.0	7.0	8.4	7.9	9.7	7.3	6.3	6.8
Percent Finer (0.003mm)	%	10.1	8.0	8.9	10.3	10.1	11.1	9.9	8.8	8.2
Percent Finer (0.005mm)	%	12.7	9.9	10.2	11.6	13.0	13.2	11.2	11.4	9.5
Percent Finer (0.006mm)	%	17.7	14.6	14.1	18.0	17.3	19.5	17.2	16.4	12.3
Percent Finer (0.009mm)	%	24.7	20.6	18.5	23.1	25.2	25.7	23.1	23.4	19.8
Percent Finer (0.012mm)	%	31.6	26.5	25.5	32.1	31.2	34.8	30.4	29.0	27.2
Percent Finer (0.016mm)	%	41.8	31.9	33.2	38.5	36.0	44.5	35.7	34.1	31.3
Percent Finer (0.021mm)	%	49.4	38.5	41.5	47.5	46.1	50.0	43.6	40.4	38.1
Percent Finer (0.029mm)	%	58.2	45.1	47.9	51.4	53.3	58.4	48.8	46.7	42.2
Percent Moisture	%	105	110	147	147	115	124	115	110	96.3
pH	SU	7.8	7.6	7.5	7.8	8.1	7.9	7.8	8.3	7.8
Total Organic Carbon	mg/kg	33300	21600	28400	33500	29200	34200	25500	27900	25900

TABLE Surface Sediment Sample Basic Physical and Chemical Results
Quanta Resources Site, Edgewater, New Jersey

	Location	SC-02	SC-06	SC-08	SC-09	SC-12	SC-14
Date	Sampled	18-Jun-99	18-Jun-99	19-Jun-99	19-Jun-99	19-Jun-99	19-Jun-99
	Sample ID	99169-05	99169-14	99170-03	99170-05	99170-11	99170-16
	Depth (ft)	0-1	0-1	0-1	0-1	0-1	0-1
Parameter	Units						
Percent Coarse Gravel	%	0	0	0	0	0	0
Percent Fine Gravel	%	0	0	0	0	0.67	0.51
Percent Coarse Sand	%	0.020	0	0.030	0.060	0.12	2.3
Percent Medium Sand	%	0	0	0.13	0	0.51	6.6
Percent Fine Sand	%	0.090	0.090	0.15	0.20	2.9	6.8
Percent Fines	%	99.9	99.9	99.7	99.7	95.8	83.8
Percent Finer (0.001mm)	%	5.0	4.6	3.0	5.0	3.7	3.2
Percent Finer (0.002mm)	%	7.5	7.7	5.9	10.0	8.3	5.2
Percent Finer (0.003mm)	%	8.8	10.7	9.6	11.0	8.3	7.1
Percent Finer (0.005mm)	%	10.6	13.0	11.9	14.0	9.2	7.8
Percent Finer (0.006mm)	%	16.2	19.9	17.8	22.0	16.5	11.7
Percent Finer (0.009mm)	%	24.4	28.4	23.0	29.0	26.6	21.4
Percent Finer (0.012mm)	%	33.7	36.8	29.7	40.0	33.0	28.5
Percent Finer (0.016mm)	%	42.5	44.5	38.6	48.0	40.4	36.3
Percent Finer (0.021mm)	%	51.2	53.7	46.0	58.0	49.5	42.8
Percent Finer (0.029mm)	%	60.0	61.4	54.9	64.0	56.9	50.6
Percent Moisture	%	109	116	98.4	112	107	103
рН	SU	7.6	7.5	7.3	7.6	7.7	7.9
Total Organic Carbon	mg/kg	33400	35700	29000	34600	38800	36500

GROUNDWATER SAMPLING RESULTS [µg/l]
QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98311-MW20	98311-MW31	98312-MW2	98312-MW21	98314-MW1	98316-MW7	98323-MW3	98323-MW6	98324-MW11
Location	MW-20	MW-31	MW-2	MW-21	MW-1	MW-7	MW-3	MW-6	MW-11
Date Sampled	11/7/98	11/7/98	11/8/98	11/8/98	11/10/98	11/12/98	11/19/98	11/19/98	11/20/98
VOCs									
1,1.1-Trichloroethane	0.20 U	0.20 U	2.0 U	5.0 U	1.0 U	2.0 U	0.20 U	20.0 U	0.20 U
1.1,2,2-Tetrachloroethane	0.30 U	0.30 U	3.3 U	8.2 U	1.6 U	3.3 U	0.30 U	33.0 U	0.30 U
1,1,2-Trichloroethane	0.40 U	0.40 U	4.3 U	11.0 U	2.2 U	4.3 U	0.40 U	43.0 U	0.40 U
1,1-Dichloroethane	0.30 U	0.30 U	3.1 U	7.8 U	11.0	3.1 U	0.30 U	31.0 U	0.30 U
1,1-Dichloroethene	0.60 ับ	. 0.60 U	5.5 U	14.0 U	2.8 U	5.5 U	0.60 ั	55.0 U	0.60 U
1,2-Dichloroethane	0.20 U	0.20 U	2.2 U	5.5 U	1.1 U	2.2 U	0.20 U	22.0 U	0.20 U
1,2-Dichloropropane	0.50 U	0.50 U	4.6 U	12.0 U	2.3 U	4.6 U	0.50 U	46.0 U	0.50 U
2-Butanone (MEK)	5.0 U	5.0 U	50.0 U	120 U	25.0 U	50.0 U	5.0 U	500 U	5.0 U
2-Chloroethyl vinyl ether									
2-Hexanone	5.0 U	5.0 U	50.0 U	120 U	25.0 U	50.0 U	5.0 U	500 U	5.0 U
4-Methyl-2-Pentanone	5.0 U	5.0 U	50.0 U	120 U	25.0 U	50.0 U	5.0 U	500 U	5.0 U
Acetone	5.0 U	5.0 U	50.0 U	120 U	25.0 U	50.0 U	- 5.0 U	500 U	5.0 U
Benzene	0.90	4.5	1900	100	56.0	1300	0.20 U	310	0.20 U
Bromodichloromethane	0.20	0.20 U	1.9 U	4.8 U	0.90 U	1.9 U	0.20 U	19.0 U	0.20 U
Bromoform	0.30 U	0.30 U	3.0 U	7.5 U	1.5 U	3.0 U	0.30 U	30.0 U	0.30 U
Bromomethane	0.30 U	0.30 U	2.7 U	6.8 U	1.4 U	2.7 U	0,30 U	27.0 U	0.30 U
Carbon Disulfide	1.0 ប	1.0 U	10.0 U	25.0 U	5.0 U	10.0 U	1.0 U	100 U	1.0 U
Carbon Tetrachloride	0.20 U	0.20 U	1.6 U	4.0 U	0.80 U	1.6 U	0.20 U	16.0 U	0.20 U
Chlorobenzene	0.10 U	0.10 U	1.4 U	3.5 U	5.4	1.4 U	0.10 U	14.0 U	0.10 U
Chloroethane	1.0 U	1.0 U	10.0 U	26.0 U	5.2 U	10.0 U	1.0 U	100 U	1.0 U
Chloroform	1.5	2.2	2.0 U	5.0 U	1.6	2.0 U	0.20 U	20.0 U	0.20 U
Chloromethane	0.90 U	0.90 U	9.3 U	23.0 U	4.6 U	9,3 U	0.90 U	93.0 U	0.90 ับ
cis-1,2-Dichloroethene	1.0 U	1.0 U	10.0 U	25.0 U	5.0 U	10.0 U	1.0 U	100 U	1.0 U
cis-1,3-Dichloropropene	0.30 U	0.30 U	3.3 U	8.2 U	1.6 U	3.3 U	0.30 U	33.0 U	0.30 U
Dibromochloromethane	0.20 U	0.20 U	2.3 U	5.8 U	1.2 U	2.3 U	0.20 U	23.0 U	0.20 U
Dichloromethane (Methylene Chloride)	1.0 U	1.0 U	10.0 U	26.0 U	5.2 U	10.0 U	1.0 U	100 U	1.0 U
Ethyl benzene	0.70	6.1	480	680	320	220	0.20 U	420	0.20 U
Tetrachloroethene	0.40	0.20	1.0 U	2.5 U	0.50 U	1.0 U	0.10 U	10.0 U	0.10 U
Toluene	0.40	5.2	230	490	220	520	0.20 U	18.0 U	0.20 U
trans-1,2-Dichloroethene	0.30 U	0.30 U	3.0 U	7.5 U	1.5 U	3.0 U	0.30 U	30.0 U	0.30 U
trans-1,3-Dichloropropene	0.30 U	0.30 U	3.1 U	7.8 U	1.6 U	3.1 U	0.30 U	31.0 U	0.30 U
Trichloroethene	1.4	0.90	4.1 U	10.0 U	2.0 U	4.1 U	0.40 U	41.0 U	0.40 U
Trichlorofluoromethane									<u></u>
Vinyl Chloride	0.40 U	0.40 U	3.9 U	9.8 U	2.0 U	3.9 U	0.40 U	39.0 U	0.40 U
Xylenes (unspecified)	1.0 U	20.0	580	2400	1500	740	1.0 U	300	1.0 U
Total VOCs	5.5	39.1	3190	3670	2114	2780	ND	1030	ND
SVOCs	<u> </u>								
1,2,4-Trichlorobenzene	1.1 U	2.3 U	12.0 U	110 U	58.0 U	23.0 U	1.2 U	130 U	1.2 U
1,2-Dichlorobenzene	0.90 U	1.8 U	9.4 U	89.0 U	46.0 U	18.0 U	1.0 U	100 U	0.90 U
1,3-Dichlorobenzene	1.0 U	2.0 U	11.0 U	100 U	52.0 U	21.0 U	1.1 U	120 U	1.0 U
1,4-Dichlorobenzene	1.1 U	2.2 U	12.0 U	110 U	57.0 U	22.0 U	1.2 U	130 U	1.1 U

Sample ID	98311-MW20	98311-MW31	98312-MW2	98312-MW21	98314-MW1	98316-MW7	98323-MW3	98323-MW6	98324-MW11
Location	MW-20	MW-31	MW-2	MW-21	MW-1	MW-7	MW-3	MW-6	MW-11
Date Sampled	11/7/98	11/7/98	11/8/98	11/8/98	11/10/98	11/12/98	11/19/98	11/19/98	11/20/98
2,2'-oxybis(1-Chloropropane)	0.80 U	1.7 U	8.8 U	84.0 U	43.0 U	17.0 U	0.90 U	98.0 U	0.80 U
2,4,5-Trichlorophenol	2.6 U	5.3 U		260 U	140 U	54.0 U	2.9 U	310 U	2.7 U
2,4,6-Trichlorophenol	2.6 U	5.2 U		260 U	130 U	52.0 U	2.8 U	300 U	2.6 U
2,4-Dichlorophenol	2.9 U	5.8 U		290 U	150 U	59.0 U	3.2 U	340 U	2.9 U
2,4-Dimethylphenol	2.9 U	5.8 U		280 U	150 U	160	3.1 U	330 U	2.9 U
2,4-Dinitrophenol	1.3 U	2.6 U		130 U	66.0 U	26.0 U	1.4 U	150 U	1.3 U
2,4-Dinitrotoluene	0.60 U	1.1 U	5.8 U	55.0 U	28.0 U	11.0 U	0.60 U	64.0 U	0.60 U
2,6-Dinitrotoluene	0.40 U	0.80 U	4.2 U	40.0 U	20.0 U	8.1 U	0.40 U	46.0 U	0.40 U
2-Chloronaphthalene	1.0 U	2.0 U	10.0 U	100 U	52.0 U	20.0 U	1.1 U	120 U	1.0 U
2-Chlorophenol	2.8 U	5.7 U		280 U	140 U	58.0 U	3.1 U	330 U	2.9 U
2-Methylnaphthalene	0.90 U	120	180	860	46.0 U	18.0 U	1.0 U	740	0.90 U
2-Methylphenol	2.4 U	4.7 U		230 U	120 U	48.0 U	2.6 U	270 U	2.4 U
2-Nitroaniline	0.50 U	0.90 U	4.8 U	46.0 U	24.0 U	9.4 U	0.50 U	54.0 U	0.50 U
2-Nitrophenol	2.8 U	5.5 U		270 U	140 U	56.0 U	3.0 U	320 U	2.8 U
3,3'-Dichlorobenzidine	1.7 U	3.4 U	18.0 U	170 U	86.0 U	34.0 U	1.8 U	200 U	1.7 U
3-Nitroaniline	0.50 U	0.90 U	4.9 U	47.0 U	24.0 U	9.6 U	0.50 U	55.0 U	0.50 U
4,6-Dinitro-2-methylphenol	2.1 U	4.3 U		210 U	110 U	43.0 U	2.3 U	250 U	2.2 U
4-Bromophenyl-phenylether	0.40 U	0.80 Ŭ	4.2 U	40.0 U	20.0 U	8.1 U	0.40 U	46.0 U	0.40 U
4-Chloro-3-methylphenol	2.8 U	5.7 U		280 U	140 U	58.0 U	3.1 U	330 U	2.9 U
4-Chloroaniline	0.50 U	1.1 U	5.6 U	53.0 U	27.0 U	- 11.0 U	- 0.60 U	62.0 U	0.50 U
4-Chlorophenyl-phenylether	0.60 U	1.1 U	5.9 U	56.0 U	29.0 U	11.0 U	0.60 U	.65.0 U	0.60 U
4-Methylphenol	2.3 U	4.6 U		230 U	120 U	47.0 U	2.5 U	270 U	2.3 U
4-Nitroaniline	0.30 U	0.70 ป	3.6 U	35.0 U	18.0 U	7.1 U	0.40 U	40.0 U	0.30 U
4-Nitrophenol	0.70 U	1.4 U		68.0 U	35.0 U	14.0 U	0.80 U	80.0 U	0.70 U
Aniline			••	••	••		••		
Benzidine			••		•	•	•		-
bis(2-Chloroethoxy) methane	1.0 U	2.0 U	10.0 U	98.0 U	50.0 U	20.0 U	1.1 U	110 U	1.0 U
bis(2-Chloroethyl) ether	0.90 U	1.8 U	9.5 U	90.0 U	46.0 U	18.0 U	1.0 U	100 U	0.90 U
bis(2-Ethylhexyl) phthalate	1.1 U	2.2 U	12.0 U	110 U	57.0 U	22.0 U	1.2 U	130 U	1.1 U
Butylbenzylphthalate	0.60 ป	1.1 U	5.8 U	55.0 U	28.0 U	11.0 U	0.60 U	64.0 U	0.60 U
Carbazole	0.20 U	0.30 U	140	16.0 U	8.4 U	3.3 U	0.20 U	19.0 U	0.20 U
Di-n-butylphthalate	0.30 U	0.60 U	3.1 U	30.0 U	15.0 U	6.0 U	0.30 U	34.0 U	0.30 U
Di-n-octylphthalate	0.40 U	0.70 U	3.8 U	36.0 U	18.0 U	7.3 U	0.40 U	42.0 U	0.40 U
Dibenzofuran	0.50 U	22.0	110	47.0 U	24.0 U	9.6 U	0.50 U	55.0 U	0.50 U
Diethylphthalate	0.30 U	0.60 U	3.0 U	28.0 U	15.0 U	5.8 U	0.30 U	33.0 U	0.30 U
Dimethylphthalate	0.50 U	1.0 U	5.2 U	49.0 U	25.0 U	10.0 U	0.50 U	57.0 U	0.50 U
Hexachlorobenzene	0.50 U	0.90 U	4.7 U	45.0 U	23.0 U	9.2 U	0.50 U	52.0 U	0.50 U
Hexachlorobutadiene	0.60 U	1.1 U	5.9 U	56.0 U	29.0 U	11.0 U	0.60 U	65.0 U	0.60 U
Hexachlorocyclopentadiene	0.40 U	0.90 U	4.5 U	43.0 U	22.0 U	8.8 U	0.50 U	50.0 U	0.40 U
Hexachloroethane	0.80 U	1.6 U	8.4 U	80.0 U	41.0 U	16.0 U	0.90 U	93.0 U	0.80 U
Isophorone	0.80 U	1.7 U	8.7 U	83.0 U	43.0 U	17.0 U	0.90 U	96.0 U	0.80 U
N-nitroso-di-n-propylamine	0.80 U	1.7 U	8.7 U	83.0 U	43.0 U	17.0 U	0.90 U	96.0 U	0.80 U

GROUNDWATER SAMPLING RESULTS [µg/l]
QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98311-MW20	98311-MW31	98312-MW2	98312-MW21	98314-MW1	98316-MW7	98323-MW3	98323-MW6	98324-MW11
Location	MW-20	MW-31	MW-2	MW-21	MW-1	MW-7	MW-3	MW-6	MW-11
Date Sampled	11/7/98	11/7/98	11/8/98	11/8/98	11/10/98	11/12/98	11/19/98	11/19/98	11/20/98
N-Nitrosodimethylamine									
N-nitrosodiphenylamine/Diphenylamine	0.40 U	0.80 U	4.2 U	40.0 U	20.0 U	8.1 U	0.40 U	46.0 U	0.40 U
Nitrobenzene	1.0 U	2.0 U	10.0 U	98.0 U	50.0 U	20.0 U	1.1 U	110 U	1.0 U
Pentachlorophenol	2.8 U	5.6 U		280 U	140 U	57.0 U	3.1 U	320 U	2.8 U
Phenol	1.3 U	2.7 U		130 U	68.0 U	27.0 U	1.5 U	150 U	1.4 U
Styrene	1.0 U	1.0 U	10,0 U	25.0 U	5.0 U	10.0 U	1.0 U	100 U	1.0 U
PAHs									
Acenaphthene	5.6	32.0	130	62.0 U	190	13.0 U	0.70 U	360	0.60 U
Acenaphthylene	0.70 U	6.9	7.2 U	68.0 U	35.0 U	14.0 U	0.80 U	80.0 U	0.70 U
Anthracene	0.30 U	4.3	11.0	28.0 U	17.0	4.3 J	0.30 U	33.0 U	0.30 U
Benzo(a)anthracene	0.20 U	0.40 U	2.2 U	20.0 U	10.0 U	4.2 U	0.20 U	24.0 U	0.20 U
Benzo(a)pyrene	0.10 U	0.30 U	1.6 U	15.0 U	7.9 U	3.1 U	0.20 U	18.0 U	0.20 U
Benzo(b)fluoranthene	0.10 U	0.20 U	1.1 U	10.0 U	5.3 U	2.1 U	0.10 U	12.0 U	0.10 U
Benzo(g,h,i)perylene	0.10 U	0.20 U	1.2 U	11.0 U	5.8 U	2.3 U	0.10 U	13.0 U	0.10 U
Benzo(k)fluoranthene	0.10 U	0.30 U	1.6 U	15.0 U	7.9 U	3.1 U	0.20 U	18.0 U	0.20 U
Chrysene	0.30 U	0.50 U	2.8 U	26.0 U	14.0 U	5.4 U	0.30 U	31.0 U	0.30 Ŭ
Dibenzo(a,h)anthracene	0.20 U	0.40 U	2.2 U	21.0 U	11.0 U	4.4 U	0.20 U	25.0 U	0.20 U
Fluoranthene	0.30 U	3.6	28.0	26.0 U	14.0 U	5.4 U	0.30 U	31.0 U	0.30 U
Fluorene	3.4	28.0	70.0	52.0 U	120	11.0 U	0.60 U	61.0 U	0.50 U
Indeno(1,2,3-cd)pyrene	0.10 U	0.30 U	1.6 U	15.0 U	7.9 U	3.1 U	0.20 U	18.0 U	0.20 U
Naphthalene	6.4	260	1600	8700	4800	2300	1.1 U	8800	1.0 U
Phenanthrene	3.4	37.0	86.0	28.0 U	130	35.0	0.30 U	33.0 U	0.30 U
Pyrene	0.20 U	2.3	19.0	17.0 U	8.9 U	3.5 U	0.20 U	20.0 U	0.20 U
Total SVOCs (including PAHs)	18.8	516.1	2374	9560	5257	2499.3	ND	9900	ND
PCBs									
Aroclor-1016					••	**	<u></u>	0.30 U	
Aroclor-1221						* ***		0.30 U	
Aroclor-1232						••		0.40 U	**
Aroclor-1242						••		0.20 U	
Aroclor-1248					*-			0.30 U	
Aroclor-1254	**							0.40 U	
Aroclor-1260								0.20 U	
Aroclor-1268								0.20 U	
Total PCB									
Metals					· 			ND	
Aluminum								58.2 U	**
Antimony					••	••		4.6 U	
Arsenic	4450	1320	37.8	12200	7230	2.8 U	7.6 U	2970	110
Barium								41.9	
Beryllium								0.20 U	
Cadmium		<u>:-</u>						0.40 U	
Calcium	336000	417000	74600	283000	313000	88400	378000	77300	278000

TAL _ ...
GROUNDWATER SAMPLING RESULTS [µg/l]
QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98311-MW20	98311-MW31	98312-MW2	98312-MW21	98314-MW1	98316-MW7	98323-MW3	98323-MW6	98324-MW11
Location	MW-20	MW-31	MW-2	MW-21	MW-1	MW-7	MW-3	MW-6	MW-11
Date Sampled	11/7/98	11/7/98	11/8/98	11/8/98	11/10/98	11/12/98	11/19/98	11/19/98	11/20/98
Chromium	14.9	33.9	2.5	3.2	8.2	1.1 U	1.0 U	1.0 U	1.0 U
Cobalt		••						1.2	
Соррег			••	1				3.5 U	.
Iron ·	~-						.=-	45700	
Lead	58.5	14.4	2.0 U	7.6	4.0 U	2.0 U	2.5 U	2.5 U	2.5 U
Magnesium	98500	138000	49900	179000	127000	58300	49700	19300	58900
Manganese								1540	
Mercury						••	•••	0.10 U	
Nickel								2.1 U	 ·
Potassium	21600	31300	30100	15000	19800	14000	12200	23700	20500
Selenium			**				-	4.8 U	
Silver				**				1.4 U	
Sodium	203000	181000	750000	440000	307000	506000	220000	89100	194000
Thallium								4.8 U	
Vanadium								2.3	
Zinc				**				4.5	••
Field Parameters									
pH	4.22	4.03	6.76	5.59	5.33	6.67	6.50	6.06	6.68
Redox .	144	173	-213	62	-128	-278	-245	-75	-375
Conductivity	3.65	4.41	4.02	3.98	3.79	2.96	2.68	1165.00	2.65
Temperature	14.7	13.9	14.2	14.7	14.9	14.9	14.1	16.9	18.0

GROUNDWATER SAMPLING RESULTS [19/1] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98324-MW12	98324-MW29	98324-MW34	98325-MW14A	98325-MW17A	98325-MW17B	98325-MW18	98325-MW30
Location	MW-12	MW-29	MW-34	MW-14A	MW-17A	MW-17A	MW-18	MW-30
Date Sampled	11/20/98	11/20/98	11/20/98	11/21/98	11/21/98	11/21/98	11/21/98	11/21/98
VOCs								
1.1.1-Trichloroethane	0.20 U	29.0	0.20 U	0.20 U	8.8	8.8	0.20 U	0.20 U
1.1.2.2-Tetrachloroethane	0.30 U	0.30 U	0,30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
1,1,2-Trichloroethane	0.40 U	0.40 U	0.40 U	0.40 U	0.40·U	0.40 U	0.40 U	0.40 U
1,1-Dichloroethane	1.1	120	0.30 U	2.3	19.0	20.0	0.30 U	2.8
1.1-Dichloroethene	0.60 U	1.5	0.60 U	0.60 U	1.4	1.3	0.60 U	0.60 U
1,2-Dichloroethane	0.20 ป	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
1,2-Dichloropropane	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
2-Butanone (MEK)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloroethyl vinyl ether				' .				
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	. 5.0 U
4-Methyl-2-Pentanone	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5,0 U	5.0 U	5.0 Ü
Acetone	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Bromodichloromethane	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Bromoform	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Bromomethane	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Carbon Disulfide	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Chlorobenzene -	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Chloroethane	1.0 U	60.0	1.0 U	1.0 U	4.5	5.3	1.0 U	1.0 U
Chloroform	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	-0.20 U
Chloromethane	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.1	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	Ò.30 U
Dibromochloromethane	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Dichloromethane (Methylene Chloride)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethyl benzene	0.20 U	3.1	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Tetrachloroethene	0.10 U	0.10 U	0.10 U	0.10 U	1.9_	2.0	0.10 U	0.10 U
Toluene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
trans-1,2-Dichloroethene	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
trans-1,3-Dichloropropene	0,30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Trichloroethene	0.40 U	0.40 U	0.40 U	0.40 U	1.4	1.5	0.40 U	0.40 U
Trichlorofluoromethane				·				
Vinyl Chloride	0.70	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 ป	0.40 U
Xylenes (unspecified)	1.0 U	8.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total VOCs	1.8	222.5	ND .	2.3	38	40	ND	2.8
SVOCs	ļ							
1,2,4-Trichlorobenzene	1.1 U	1.1 U	5,4	1.2 U	1.2 U	1.2 U	1.1 U	1.1 U
1,2-Dichlorobenzene	0.90 U	0.90 U	0.90 U	0.90 U	1.0 U	1.0 U	0.90 U	0.90 U
1,3-Dichlorobenzene	1.0 U	1.0 U	8.4	1.0 U	1.1 U	1.1 U	1.0 U	1.0 U
1,4-Dichlorobenzene	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.2 U	1.1 U	1.1 U

GROUNDWATER SAMPLING RESULTS [1g/1]
QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98324-MW12	98324-MW29	98324-MW34	98325-MW14A	98325-MW17A	98325-MW17B	98325-MW18	98325-MW30
Location	MW-12	MW-29	MW-34	MW-14A	MW-17A	MW-17A	MW-18	MW-30
Date Sampled	11/20/98	11/20/98	11/20/98	11/21/98	11/21/98	11/21/98	11/21/98	11/21/98
2,2'-oxybis(1-Chloropropane)	0.80 U	0.80 U	0.80 U	0.90 U	0.90 U	0.90 U	0.80 U	0.80 U
2.4.5-Trichlorophenol	2.6 U	2.6 U	2.7 U	2.7 U	2.9 U	2.9 U	2.6 U	2.6 U
2,4,6-Trichlorophenol	2.6 U	2.6 U	2.6 U	2.7 U	2.8 U	2.8 U	2.5 U	2.5 U
2,4-Dichlorophenol	2.9 U	2.9 U	2.9 U	3.0 U	3.1 U	3.1 U	2.8 U	2.8 U
2,4-Dimethylphenol	2.8 U	2.8 U	2.9 U	3.0 U	3.1 U	3.1 U	2.8 U	2.8 U
2,4-Dinitrophenol	1.3 U	1.3 U	1.3 U	1.3 U	1.4 U	1.4 U	1.2 U	1.3 U
2,4-Dinitrotoluene	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.50 U	0.50 U
2,6-Dinitrotoluene	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
2-Chloronaphthalene	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.1 U	1.0 U	1.0 U
2-Chlorophenol	2.8 U	2.8 U	2.9 U	2.9 U	3.1 U	3.1 U	2.8 U	2.8 U
2-Methylnaphthalene	0.90 U	0.90 U	0.90 U	0.90 U	1.0 U	1.0 U	0.90 U	0.90 U
2-Methylphenol	2.3 U	2.3 U	2.4 U	2.4 U	2.5 U	2.5 U	2.3 U	2.3 U
2-Nitroaniline	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
2-Nitrophenol	2.7 U	2.7 U	2.8 U	2.9 U	3.0 U	3.0 U	2.7 U	2.7 U
3,3'-Dichlorobenzidine	1.7 U	1.7 U	1.7 U	1.7 U	1.8 U	1.8 U	1.6 U	1.6 U
3-Nitroaniline	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 ป	0.50 U	0.50 U
4,6-Dinitro-2-methylphenol	2.1 U	2.1 U	2.2 U	2.2 U	2.3 U	2.3 U	2.1 U	2.1 U
4-Bromophenyl-phenylether	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	. 0.40 U	0.40 U
4-Chloro-3-methylphenol	2.8 U	2.8 U	2.9 U	2.9 U	3.1 U	3.1 U	2.8 U	2.8 U
4-Chloroaniline	0.50 U	0.50 U	0.50 U	0.60 U	0.60 U	0.60 Ū	0.50 U	0.50 U
4-Chlorophenyl-phenylether	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U
4-Methylphenol	2.3 U	2.3 U	2.3 U	2.4 U	2.5 U	2.5 U	2.2 U	2.3 U
4-Nitroaniline	0.30 U	0.30 U	0.30 U	0.40 U	0.40 U	0.40 U	0.30 U	0.30 U
4-Nitrophenol	0.70 U	0.70 U	0.70 U	0.70 ั	0.70 U	0.70 U	0.70 U	0.70 U
Aniline		••	••			44		•
Benzidine			**					
bis(2-Chloroethoxy) methane	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.1 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	0.90 U	0.90 U	0.90 U	0.90 U	1.0 U	1.0 U	0.90 U	0.90 U
bis(2-Ethylhexyl) phthalate	1.1 U	1.1 U	1.1 U	1.1 U	1.6	2.3	5.7	1.1 U
Butylbenzylphthalate	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.50 U	0.50 U
Carbazole	0.20 U	0.20 U	0.20 U	0,20 U	0.20 U	0.20 U	0.20 U	0.20 U
Di-n-butylphthalate	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Di-n-octylphthalate	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.30 U	0.30 U
Dibenzofuran	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Diethylphthalate	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Dimethylphthalate	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Hexachlorobenzene	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.40 U	0.40 U
Hexachlorobutadiene	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U
Hexachlorocyclopentadiene	0.40 U	0.40 U	0.40 U	0.50 U	0.50 U	0.50 U	0.40 U	0.40 U
Hexachloroethane	0.80 U	0.80 U	0.80 U	0.80 U	0.90 U	0.90 U	0.80 U	0.80 U
Isophorone	0.80 U	0.80 U	0.80 U	0.90 U	0.90 U	0.90 U	0.80 U	0.80 U
N-nitroso-di-n-propylamine	0.80 U	.0.80 U	0.80 U	0.90 U	0.90 U	0.90 U	0.80 U	0.80 U

TA. 5-4
GROUNDWATER SAMPLING RESULTS [12/1]
QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98324-MW12	98324-MW29	98324-MW34	98325-MW14A	98325-MW17A	98325-MW17B	98325-MW18	98325-MW30
Location	MW-12	MW-29	MW-34	MW-14A	MW-17A	MW-17A	MW-18	MW-30
Date Sampled	11/20/98	11/20/98	11/20/98	11/21/98	11/21/98	11/21/98	11/21/98	11/21/98
N-Nitrosodimethylamine						. ==		
N-nitrosodiphenylamine/Diphenylamine	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
Nitrobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.1 U	1.0 U	1.0 U
Pentachlorophenol	2.8 U	2.8 U	2.8·U	2.9 U	3.0 U	3.0 U	2.7 U	2.8 U
Phenol	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U	1.4 U	1.3 U	1.3 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1,0 U
PAHs								
Acenaphthene	0.60 U	0.60 U	0.60 U	0.70 U	0.70 U	0.70 U	0.60 U	0.60 U
Acenaphthylene	0.70 U	0.70 U	0.70 ป	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U
Anthracene	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Benzo(a)anthracene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	0.10 U	0.10 U	0.20 U	0.20 U	0.20 U	0.20 U	0.10 U	0.10 U
Benzo(b)fluoranthene	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(g,h,i)perylene	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(k)fluoranthene	0.10 U	0.10 U	0.20 U	0.20 U	0.20 U	0.20 U	0.10 U	0,10 U
Chrysene	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Dibenzo(a,h)anthracene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0,20 U	0,20 U
Fluoranthene	0.30 U	0.30 U	0.30 U	0,30 U	0.30 U	0.30 U	0.30 U	0.30 U
Fluorene	0.50 U	0.50 U	0.50 U	0.50 U	- 0.60 U	0.60 U	0.50 U	0.50 U
Indeno(1,2,3-cd)pyrene	0.10 U	0.10 U	0.20 U	0.20 U	0.20 U	0.20 U	0.10 U	0.10 U
Naphthalene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.90 U	1.0 U
Phenanthrene	0.30 U	0.30 U	0,30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
Pyrene	0.20 U	0.20 U	0.20 U	0.20 ป	0.20 U	0.20 U	0.20 ป	0.20 U
Total SVOCs (including PAHs)	ND	ND	13.8	ND	1.6	2.3	5.7	ND
PCBs							·	
Aroclor-1016					•••		0.30 U	
Aroclor-1221	**		+-		••		0.30 U	- 10-0
Aroclor-1232							0.40 U	
Aroclor-1242				-	••		0.20 U	
Aroclor-1248							0.30 U	
Aroclor-1254	~~	**	**				0.40 U	
Aroclor-1260		••		••		p	0.20 U	
Aroclor-1268		***		••		••	0.20 U	
Total PCB					4-			
Metals							ND	
Aluminum							58.2 U	
Antimony		**	po 88				4.6 U	-
Arsenic	. 274	135	257	3.8 U	37.3	34.7	3.8.U	3.8 U
Barium							224	
Beryllium							0.20 U	
Cadmium		••	,				0.40 U	
Calcium	289000	276000	269000	237000	209000	204000	215000	44300

TAMES 6-4 GROUNDWATER SAMPLING RESULTS [4g/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98324-MW12	98324-MW29	98324-MW34	98325-MW14A	98325-MW17A	98325-MW17B	98325-MW18	98325-MW30
Location	MW-12	MW-29	MW-34	MW-14A	MW-17A	MW-17A	MW-18	MW-30
Date Sampled	11/20/98 /	11/20/98	11/20/98	11/21/98	11/21/98	11/21/98	11/21/98	11/21/98
Chromium	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cobalt							1.2 U	
Copper						-	3.5 U	4-
Iron						••	9570	
Lead	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Magnesium	64100	80900	79000	54900	68800	67400	43700	76900
Manganese				 .		••	2310	
Mercury		4-		••			0.10 U	
Nickel						••	2.1 U	
Potassium	17100	25400	11600	15600	15600	15500	14900	25500
Selenium				••	·		4.8 U	
Silver					••		1.4 U	
Sodium	214000	222000	89000	165000	104000	103000	232000	761000
Thallium			••	••	••		4.8 U	
Vanadium							1.9 U	••
Zinc	<u></u>					••	4,5 U	
Field Parameters								
pH	6.25	6.70	6.29	7.14	6.58	6.58	4,64	7.02
Redox	35	-138	22	-162	-151	-151	-89	-116
Conductivity	1396.00	2.40	1231.00	3.13	1721.00	1721.00	1661.00	3510.00
Temperature	14.8	16.0	16.3	13.5	15.6	15.6	14.5	14.7

GROUNDWATER SAMPLING RESULTS [4g/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98326-MW23	98326-MW9	98327-MW101	98327-MW101A	98327-MW102	98327-MW103	98327-MW4	MW-106	MW-107
Location	MW-23	MW-9	MW-101	MW-101	MW-102	MW-103	MW-4	MW-106	MW-107
Date Sampled	11/22/98	11/22/98	11/23/98	11/23/98	11/23/98	11/23/98	11/23/98	7/8/99	7/8/99
VOCs	11/22/0			11,20,70	11120770		1		
1.1.1-Trichloroethane	4.4	0.20 U	1.0 U	0.40 U	40.0 U	20.0 U	2.0 U	3.0 U	30.0 U
1.1.2.2-Tetrachloroethane	0.30 U	0.30 U	1.6 U	0.70 U	66.0 U	33.0 U	3,3 U	3.2 U	32.0 U
1.1,2-Trichloroethane	0.40 U	0.40 U	2.2 U	0.90 U	86.0 U	43.0 U	4.3 U	3.5 U	35.0 U
1,1-Dichloroethane	6.0	1.0	1.6 U	0.60 U	62.0 U	31.0 U	3.1 U	2.9 U	29.0 U
1,1-Dichloroethene	0.60 U	0.60 U	2.8 U	1.1 U	110 U	55.0 U	5.5 U	4.9 U	49.0 U
1,2-Dichloroethane	0.20 U	0.20 U	1.1 U	0.40 U	44.0 U	22.0 U	2.2 U	2.9 U	29.0 U
1,2-Dichloropropane	0.50 U	0.50 U	2.3 U	0.90 U	92.0 U	46.0 U	4.6 U	1.4 U	14.0 U
2-Butanone (MEK)	5.0 U	5.0 U	25.0 U	10.0 U	1000 U	500 U	50.0 U		
2-Chloroethyl vinyl ether									
2-Hexanone	5.0 U	5.0 U	25.0 U	10.0 U	1000 U	500 U	50.0 U	2.8 U	28.0 U
4-Methyl-2-Pentanone	5.0 U	5.0 U	25.0 U	10.0 U	1000 Ų	500 U	50.0 U	5.6 U	56.0 U
Acetone	5.0 U	5.0 U	25.0 U	10.0 U	1000 U	500 U	50.0 U	24.0 U	240 U
Benzene	0.20 U	0.20 U	4.4	4.7	14000	2200	140	6.3	5300
Bromodichloromethane	0.20 U	0.20 U	0.90 U	0.40 U	38.0 U	19.0 U	1.9 U	2.3 U	23.0 U
Bromoform	0.30 U	0,30 U	1.5 U	0.60 U	60.0 U	30.0 U	3.0 U	3.3 U	33.0 U
Bromomethane	0.30 U	0.30 U	1.4 U	0.50 U	54.0 U	27.0 U	2.7 U	5.5 U	55.0 U
Carbon Disulfide	1.0 U	- 1.0 U	5:0 U	2.0 U	200 U	100 U	10.0 U	10.0 U	100 U
Carbon Tetrachloride	0:20 U —	0.20:U-	0.80 U	0.30 U	32.0 U	16.0 U	1.6 U	4.4 U	44.0 U
Chlorobenzene	0.10 U	- 7.8	0.70 U	0.30 U	28.0 U	14.0 U	1.4 U	1.9 U	19.0 U
Chloroethane	1.0 U	1.0 U	5.2 U	2.1 U	210 U	100 U	10.0 U	4.1 U	41.0 U
Chloroform	0.30	0.20 U	1.0 U	0.40 U	40.0 U	20.0 U	2.0 U	3.7 U	37.0 U
Chloromethane	0.90 U	0.90 U	4.6 U	1.9 U	190 U	93.0 U	9.3 U	4.2 U	42.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	5.0 U	2,0 U	200 U	100 U	10.0 U	3.7 U	37.0 U
cis-1,3-Dichloropropene	0.30 U	0.30 U	1.6 U	0.70 U	66.0 U	33.0 U	3.3 U	2.7 U	27.0 U
Dibromochloromethane	0.20 U	0.20 U	1,2 U	0,50 U	46.0 U	23.0 U	2.3 U	3.2 U	32.0 U
Dichloromethane (Methylene Chloride)	1.0 U	1.0 U	5.2 U	2.1 U	210 U	100 U	10.0 U	9.9 U	99.0 U
Ethyl benzene	0,20 U	0.20 U	4.0	5.1	660	1100	420		
Tetrachloroethene	0.10 U	0.10 U	0.50 U	0.20 U	20.0 U	10.0 U	1.0 U	1.4 Ü	14.0 U
Toluene	0.20 U	0.20 U	4.2	4.7	6000	6100	150	20.0	3800
trans-1,2-Dichloroethene	0.30 U	0.30 U	1.5 U	0.60 U	60.0 U	30.0 U	3.0 U	4.5 U	45.0 U
trans-1,3-Dichloropropene	0.30 U	0.30 U	1.6 U	0.60 U	62.0 U	31.0 U	3.1 U	3.1 U	31.0 U
Trichloroethene	0.40 U	0.40 U	2.0 U	0.80 U	82.0 U	41.0 U	4.1 U	3.1 U	31.0 U
Trichlorofluoromethane								4.537	
Vinyl Chloride	0.40 U	0.40 U	2.0 U	0.80 U	78.0 U	39.0 U	3.9 U	4.5 U	45.0 U
Xylenes (unspecified)	1.0 U	1.0 U	5.0 U	3.9	2400	5000	1200	26.2	0100
Total VOCs	10.7	8.8	12.6	18.4	23920	15600	1910	26.3	9100
SVOC8	1,5	1011	1 4 7 7	1	220.77	110 77	20.011	6017	120 U
1,2,4-Trichlorobenzene	1.2 U	1.2 U	1.1 U	1.1 U	230 U	110 U	29.0 U	6.0 U	
1,2-Dichlorobenzene	1.0 U	0.90 U	0.90 U	0.90 U	180 U_	90.0 U	23.0 U	6.5 U	140 U
1,3-Dichlorobenzene	1.1 U	5.7	1.0 U	1.0 U	200 U	100 U	26.0 U	7.6 U	160 U
1,4-Dichlorobenzene	1.2 U	7.4	1.1 U	1.1 U	220 U	110 U	28.0 U	7.9 U	160 U

GROUNDWATER SAMPLING RESULTS [4g/1] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98326-MW23	98326-MW9	98327-MW101	98327-MW101A	98327-MW102	98327-MW103	98327-MW4	MW-106	MW-107
Location	MW-23	MW-9	MW-101	MW-101	MW-102	MW-103	MW-4	MW-106	MW-107
Date Sampled	11/22/98	11/22/98	11/23/98	11/23/98	11/23/98	11/23/98	11/23/98	7/8/99	7/8/99
2,2'-oxybis(1-Chloropropane)	0.90 U	0.90 U	0.80 U	0.80 U	170 U	84.0 U	21.0 U		1
2,4,5-Trichlorophenol	. 2.8 U	2.8 U	2.6 U	2.6 U	530 U	260 U	67.0 U	20.0 U	410 U
2,4,6-Trichlorophenol	2.8 U	2.7 U	2.5 U	2.6 U	520 U	260 U	66.0 U	19.0 U	390 U
2,4-Dichlorophenol	3.1 U	3.0 U	2.8 U -	2.9 U	580 U	290 U	73.0 U	17.0 U	360 U
2,4-Dimethylphenol	3,1 U	3.0 U	9.7	10.0	19000	2500	75.0	18.0 U	2200
2,4-Dinitrophenol	1.4 U	1.3 U	1.3 U	1.3 U	260 U	130 U	32.0 U	20.0 U	400 U
2,4-Dinitrotoluene	0.60 U	0.60 U	0.50 U	0.60 U	110 U	56.0 U	14.0 U	4.4 U	91.0 U
2,6-Dinitrotoluene	0.40 U	0.40 U	0.40 U	0.40 U	80.0 U	40.0 U	10.0 U	3.8 U	78.0 U
2-Chloronaphthalene	1.1 U	1.0 U	1.0 U	1.0 U	200 U	100 U	26.0 U	2.9 U	60.0 U
2-Chlorophenol	3.0 U	3.0 U	2.8 U	2.8 U	570 U	280 U	72.0 U	19.0 U	380 U
2-Methylnaphthalene	1.0 U	0.90 U	41.0	40.0	4200	1400	170	320	1000
2-Methylphenol	2.5 U	2.4 U	8.1	7.8	16000	980	59.0 U	20.0 U	420 U
2-Nitroaniline	0.50 U	0.50 U	0.50 U	0.50 U	93.0 U	46.0 U	12.0 U	3.2 U	66.0 U
2-Nitrophenol	3.0 U	2.9 U	2.7 U	2.7 U	550 U	280 U	70.0 U	20.0 U	420 U
3,3'-Dichlorobenzidine	1.8 U	1.8 U	1.6 U	1.7 U	340 U	170 U	43.0 U	19.0 U	380 U
3-Nitroaniline	0.50 U	0.50 U	0.50 U	0.50 U	95.0 U	47.0 U	12.0 U	9.5 U	200 U
4,6-Dinitro-2-methylphenol	2,3 U	2.2 U	2.1 U	2.1 U	430 U	210 U	54.0 U	27.0 U	550 U
4-Bromophenyl-phenylether	0.40 U	0.40 U	0.40 Ŭ	0.40 U	80.0 U	40.0 U	10.0 U	-3.6·U	74.0 U
4-Chloro-3-methylphenol	3.0 U	3.0 U	2.8 U	2.8 U	570 U	280 U	72.0 U	- 20.0 U	410 U
4-Chloroaniline	0.60 U	0.60 U	0.50 U	0,50 U	110 U	54.0 U	14.0 U	4.2 U	88.0 U
4-Chlorophenyl-phenylether	0.60 U	0.60 U	0.60 U	0.60 U	110 U	57.0 U	14.0 U	4.5 U	92,0 U
4-Methylphenol	2.5 U	2.4 U	16.0	16.0	32000	1200	58.0 U	20.0 U	430
4-Nitroaniline	0.40 U	0.40 U	0.30 U	0.30 U	70.0 U	35.0 U	8.8 U	4.1 U	86.0 U
4-Nitrophenol	0.70 U	0.70 U	0.70 U	0.70 U	140 U	69.0 U	17.0 U	15.0 U	310 U
Aniline				·		**		-	
Benzidine					**				
bis(2-Chloroethoxy) methane	1.0 U	1.0 U	1.0 U	1.0 U	200 U	99.0 U	25.0 U		
bis(2-Chloroethyl) ether	1.0 U	0.90 U	0.90 U	0.90 U	180 U	91.0 U	23.0 U		
bis(2-Ethylhexyl) phthalate	1,2 U	1.2 U	1.1 U	1.1 U	220 U	110 U	28.0 U		
Butylbenzylphthalate	0.60 U	0.60 U	1.2	1.1	110 U	56.0 U	14.0 U	2.8 U	57.0 U 120
Carbazole	0.20 U	0.20 U	58.0	56.0	33.0 U	16.0 U	4.2 U	16.0	
Di-n-butylphthalate	0.30 U	0.30 U	0.30 U	0.30 U	60.0 U	30.0·U	7.6 U 9.1 U	3.4 U 2.3 U	69.0 U 47.0 U
Di-n-octylphthalate	0.40 U	0.40 U	0.30 U	0.40 U	72.0 U	36.0 U			130
Dibenzofuran	0.50 U	0.50 U	24.0	24.0	95.0 U	47.0 U	12.0 U 7.3 U	41.0 2.6 U	
Diethylphthalate	0.30 U	0.30 U	0.30 U	0.30 U	58.0 U 99.0 U	29.0 U 49.0 U	12.0 U	2.6 U	54.0 U 54,0 U
Dimethylphthalate	0.50 U	0.50 U	0.50 U	0.50 U	99.0 U 91.0 U		11.0 U	3.4 U	70.0 U
Hexachiorobenzene	0.50 U	0.50 U	0.40 U	0.50 U		45.0 U 57.0 U	14.0 U	9.7 U	200 U
Hexachlorobutadiene	0.60 U	0.60 U	0.60 U	0.60 U	110 U		11.0 U	6.3 U	130 U
Hexachlorocyclopentadiene	0.50 U	0.50 U	0.40 U	0.40 U	86,0 U	43.0 U		12.0 U	240 U
Hexachloroethane	0.90 U	0.80 U	0.80 U	0.80 U	160 U	80.0 U	20.0 U	2.6 U	
Isophorone	0.90 U	0.90 U	0.80 U	0.80 U	170 U	84.0 U	21.0 U	6.3 U	53.0 U 130 U
N-nitroso-di-n-propylamine	0,90 U	0:90 U	0.80 U	0.80 U	170 U	84.0 U	21.0 U	1 0.3 U	1300

GROUNDWATER SAMPLING RESULTS [1g/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98326-MW23	98326-MW9	98327-MW101	98327-MW101A	98327-MW102	98327-MW103	98327-MW4	MW-106	MW-107
Location	MW-23	MW-9	MW-101	MW-101	MW-102	MW-103	MW-4	MW-106	MW-107
Date Sampled	11/22/98	11/22/98	11/23/98	11/23/98	11/23/98	11/23/98	11/23/98	7/8/99	7/8/99
N-Nitrosodimethylamine			••				**		10 pt
N-nitrosodiphenylamine/Diphenylamine	0.40 U	0.40 U	0.40 U	0,40 U	80.0 U	40.0 U	10.0 U		
Nitrobenzene	1.0 U	1.0 U	1.0 U	1.0 U	200 U	99.0 U	25.0 U	2.6 U	53.0 U
Pentachlorophenol	3.0 U	2.9 U	2.8 U	2,8 U	560 U	280 U	71.0 U	10.0 U	220 U
Phenol	1.4 U	1.4 U	3.7	3.9	12000	180	34.0 U	10.0 U	210 U
Styrene	1.0 U	1.0 U	5.0 U	2.0 U	860	1200	10.0 U	3.4 U	34.0 U
PAHs									
Acenaphthene	0.70 U	0.70 U	41.0	42.0	870	63.0 U	16.0 U	100	230
Acenaphthylene	0.70 U	0.70 U	2.4	2.5	520	69.0 U	17.0 U	4.8 U	100 U
Anthracene	0.30 U	0.30 U	10.0	10.0	510	29.0 U	7.3 U	20.0	65.0 U
Benzo(a)anthracene	0.20 U	0.20 U	0.20 U	0.20 U	350	21.0 U	5,2 U	7.8	60.0 U
Benzo(a)pyrene	0.20 U	0.20 U	0.10 U	0.10 U	200	15.0 U	3.9 U	3.4	68.0 U
Benzo(b)fluoranthene	0.10 U	0.10 U	0.10 U	0.10 U	200	10.0 U	2.6 U	4.0	60.0 U
Benzo(g,h,i)perylene	0.10 U	0.10 U	0,10 U	0.10 U	23.0 U	11.0 U	2.9 U	4.5 U	93.0 U
Benzo(k)fluoranthene	0.20 U	0.20 U	0.10 U	0.10 U	31.0 U	15.0 U	3.9 U	3.6 U	74.0 U
Chrysene	0.30 U	0.30 U	0.30 U	0.30 U	260	27.0 U	6.8 U	5.8	80.0 U
Dibenzo(a,h)anthracene	0.20 U	0.20 U	0.20 U	0.20 U	43.0 U	22.0 U	5.5 U		
Fluoranthene	0.30 U	0.30 U	8.5	8.2	950	27.0 U	6.8 U	24.0	67.0 U
Fluorene	0.60 U	0.60 U	26.0	26.0	940	52.0 U	13.0 U	72.0	92.0
Indeno(1,2,3-cd)pyrene	0.20 U	0.20 U	0.10 U	0.10 U	31.0 U	15.0 U	3.9 U	4.0 U	84.0 U
Naphthalene	1.0 ป	1.0 U	160	160	23000	16000	. 4200	1200	11000
Phenanthrene	0.30 U	0.30 U	57.0	56.0	2300	29.0 U	44.0	110	70.0
Pyrene	0.20 U	0.20 U	6.4	6.0	830	18.0 U	4.4 U	21,0	72.0 U
Total SVOCs (including PAHs)	ND	13.1	473	469:5	114130	22260	4489	1945	15272
PCBs							<u> </u>		
Aroclor-1016		0.30 U			2.1 U				
Aroclor-1221	**	0.30 U			0.30 U				
Aroclor-1232		0.40 U		**	2.1 U				
Aroclor-1242		0.20 U			2.1 U				
Aroclor-1248		0.30 U			2.1 U			·	
Aroclor-1254		0.40 U	ne.	:	4.6 U				
Aroclor-1260		0.20 U			4.6 U				
Aroclor-1268		0.20 U			0:20 U	••			
Total PCB)			210	<u></u>	 -		
Metals		ND	<u> </u>	 	ND COSO		 		
Aluminum	**	58.2 U		:	6950	**		-	
Antimony		4.6 U			8.8 U	2200	776	12.7	20000
Arsenic	11.2 U	3.8 U	13.4	9.1	440	2280	776	13.7	20900
Barium		91.8			142				
Beryllium		0.20 U		••	0.40 U				
Cadmium		0.40 U	166000	154000	0.80 U	202000	100000		
Calcium	395000	337000	166000	174000	211000	203000	199000		

GROUNDWATER SAMPLING RESULTS [µg/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	98326-MW23	98326-MW9	98327-MW101	98327-MW101A	98327-MW102	98327-MW103	98327-MW4	MW-106	MW-107
Location	MW-23	MW-9	MW-101	MW-101	MW-102	MW-103	MW-4	MW-106	MW-107
Date Sampled	11/22/98	11/22/98	11/23/98	11/23/98	11/23/98	11/23/98	11/23/98	7/8/99	7/8/99
Chromium	4.4 U	1.0 U	2.0 U	2.0 U	2.2 U	3.9	2.0 U	25,2	4.4 U
Cobalt		1.4			2.6 U	-	<u>:</u>		
Copper		3.5 U	**		5.8 U	••	<u></u>		:==
Iron	· ••	103			406				
Lead	8.0 U	2.5 U	5.0 U	5.0 U	4.0 U	4.0 U	5.0 U	34,8	8.4 U
Magnesium	146000	92900	18700	19500	7940	67400	12800		
Manganese		518			65.9			·	
Mercury		0.10 U			0.10 U			••	
Nickel		2.1 U		**	6.8	••			
Potassium	43200	20500	12500	13000	121000	7470	6370		
Selenium		4.8 U			8.4 U		•• -		
Silver	, 	1.4 U			2.8 U				
Sodium	808000	188000	76400	79700	261000	195000	32900		
Thallium		4.8 U			9.0 ℧				
Vanadium		1.9 U			52.7				
Zinc		4.5 U			8.8	••			
Field Parameters									
рН	6.31	6.56	6.59	6.59	12.04	5.71	7.18	6.79	4.79
Redox	-42	-73	-119	-119	-298	-8	-133	-171	80
Conductivity	2730.00	1214.00	1264.00	1264.00	1575.00	1010.00	1059.00		
Temperature	17.3	15.9	16.8	16.8	15.8	13.3	17.6	30.3	30.3

GROUNDWATER SAMPLING RESULTS [4g/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	MW-108	MW-108D	MW-109	MW-110
Location	MW-108	MW-108	MW-109	MW-110
Date Sampled	7/9/99	7/9/99	7/8/99	7/9/99
VOCs				
1.1.1-Trichloroethane	0.30 U	0,30 U	0.30 U	1.5 U
1,1,2,2-Tetrachloroethane	0.30 U	0.30 U	0.30 U	1.6 U
1.1.2-Trichloroethane	0.30 U	- 0.30 U	0.30 U-	1.8 U
1.1-Dichloroethane	0.30 U	0.30 U	0.30 U	1.4 U
1.1-Dichloroethene	0.50 U	0.50 U	0.50 U	2.4 U
1,2-Dichloroethane	0.30 U	0.30 U	0.30 U	1.4 U
1,2-Dichloropropane	0.10 U	0.10 U	0.10 U	0.70 U
2-Butanone (MEK)				
2-Chloroethyl vinyl ether				
2-Hexanone	0.30 U	0.30 U	0.30 U	1.4 U
4-Methyl-2-Pentanone	0.60 U	0.60 U	0.60 U	2.8 U
Acetone	8.6	6.7	2.4 U	12.0 U
Benzene	3.1	2.9	5.4	74.0
Bromodichloromethane	0.20 U	0.20 U	0.20 U	1.2 U
Bromoform	0.30 U	0.30 U	0.30 U	1.6 U
Bromomethane	0.60 U	0.60 U	0.60 U	2.8 U
Carbon Disulfide	1:0 U	1.0 U	1.0 U	- 5.0 U
Carbon Tetrachloride	0.40 U	0.40 U	0.40 U	2.2 U
Chiorobenzene	1.5	1.4	0.20 U	0.90 U
Chloroethane	0.40 U	0.40 U	0.40 U	2.0 U
Chloroform	0.40 U	0.40 U	0:40 U	1.8 U
Chloromethane	0.40 U	0.40 U	0.40 U	2.1 U
cis-1,2-Dichloroethene	0,40 U	0.40 U	0.40 U	1.8 U
cis-1,3-Dichloropropene	0.30 U	0.30 U	0.30 U	1.4 U
Dibromochloromethane	0,30 U	0.30 U	0.30 U	1.6 U
Dichloromethane (Methylene Chloride)	1.0 U	1.0 U	1.0 U	5.0 U
Ethyl benzene				_=_
Tetrachloroethene	0.10 U	0.10 U	0.10 U	0.70 U
Toluene	4.6	4.6	3.5	1.5
trans-1,2-Dichloroethene	0.50 U	0.50 U	0.50 U	2,2 U
trans-1,3-Dichloropropene	0.30 U	0.30 U	0.30 U	1.6 U
Trichloroethene	0.30 U	0.30 U	0.30 U	1.6 U
Trichlorofluoromethane				,
Vinyl Chloride	0.50 U	0.50 U	0.50 U	2.2 U
Xylenes (unspecified)				
Total VOCs	17.8	15.6	8.9	75.5
SVOCs			 	
1,2,4-Trichlorobenzene	1.1 U	1.2 U	1,2 U	2.4 U
1,2-Dichlorobenzene	1.2 U	1.3 U	1.4 U	2.7 U
1,3-Dichlorobenzene	1.4 U	1.5 U	1.6 U	3.1 U
1,4-Dichlorobenzene	1.5 U	1.6 U	1.6 U	3.2 U

GROUNDWATER SAMPLING RESULTS [1g/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

Sample ID	MW-108	MW-108D	MW-109	MW-110
Location	MW-108	MW-108	MW-109	MW-110
Date Sampled	7/9/99	7/9/99	7/8/99	7/9/99
2,2'-oxybis(1-Chloropropane)	**			
2,4,5-Trichlorophenol	3.8 U	4.0.U	4.2 U	8.2 U
2,4,6-Trichlorophenol	3.6 U	3.8 U	4.0 U	7.7 บ
2,4-Dichlorophenol	3.2 U	3.5 U	3.6 U	7.0 U
2,4-Dimethylphenol	3.3 U	3.5 U	3.7 U	7.2 U
2.4-Dinitrophenol	3.7 U	4.0 U	4.1 U	8.0 U
2.4-Dinitrotoluene	0.80 U	0.90 U	0,90 U	1.8 U
2,6-Dinitrotoluene	0.70 U	0.80 U	0:80 U	1.5 U
2-Chloronaphthalene	0.60 U	0.60 U	0.60 U	1.2 U
2-Chlorophenol	3.5 U	3.8 U	3.9 U	7.6 U
2-Methylnaphthalene	1.0	1.1	30.0	9.4
2-Methylphenol	3.9 U	4.2 U	4.3 U	8.4 U
2-Nitroaniline	0.60 U	0.60 U	0.70 U	1.3 U
2-Nitrophenol	3,9 U	4.2 U	4.3 U	8.4 U
3,3'-Dichlorobenzidine	3.5 U	3.8 U	3,9 U	7.6 U
3-Nitroaniline	1,8 U	1.9 U	2.0 U	3.9 U
4,6-Dinitro-2-methylphenol	5.0 U	5.4 U	5.6 U	11.0 U
4-Bromophenyl-phenylether	0.70 U	0.70 U	0.70 U	- 1.4 U
4-Chloro-3-methylphenol	3.8 U	-4.0 U	4.2 U	8.2 U
4-Chloroaniline	0,80 U	0.90 U	0.90 U	1.7 U
4-Chlorophenyl-phenylether	0.80 U	0.90 U	0.90 U	1.8 U
4-Methylphenol	3.8 U	4.1 U	5.7	8.2 U
4-Nitroaniline	0.80 U	0.80 U	0.90 U	1.7 U
4-Nitrophenol	2.8 Ū	3.1 U	3.2 U	6.2 U
Aniline		j		
Benzidine				
bis(2-Chloroethoxy) methane	,			
bis(2-Chloroethyl) ether				
bis(2-Ethylhexyl) phthalate				<u> </u>
Butylbenzylphthalate	0.50 U	0.60 U	0.60 U	1.1 U
Carbazole	0.80 U	0.90 U	11.0	88.0
Di-n-butylphthalate	0.60 U	0.70 U	0.70 U	1.4 U
Di-n-octylphthalate	0.40 U	0.50 U	0.50 U	0.90 U
Dibenzofuran	0.70 U	0.80 U	9.5	78,0
Diethylphthalate	0.50 U	0.50 U	0.50 U	1.1 U
Dimethylphthalate	0.50 U	0.50 U	0.50 U	1.1 U
Hexachlorobenzene	0.60 U	0,70 U	0.70 U	1.4 U
Hexachlorobutadiene	1.8 U	2.0 U	2.0 U	4.0 U
Hexachlorocyclopentadiene	1.2 U	1.3 U	1.3 U	2.6 U
Hexachloroethane	2.2 U	2.3 U	2.4 U	4.7 U
Isophorone	0.50 U	0.50 U	0.50 U	1.0 U
N-nitroso-di-n-propylamine	1.2 U	1.3 U	1.3 U	2.6 U

GROUNDWATER SAMPLING RESULTS [µg/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

C1- ID	MW-108	MW-108D	MW-109	MW-110
Sample ID	MW-108	MW-108	MW-109	MW-110
Location Date Sampled	7/9/99	7/9/99	7/8/99	7/9/99
			7,000	
N-Nitrosodimethylamine				
N-nitrosodiphenylamine/Diphenylamine		0.50 U	0.50 U	1.0 U
Nitrobenzene	0.50 U	2.1 U	2.2 U	4.3 U
Pentachlorophenol	2.0 U	2.1 U	2.2 U	4.3 U
Phenol	2.0 U	0.30 U	0.30 U	1.7 U
Styrene	0.30 U	0.30 0	0.30 0	1,70
PAHs	- 420		29.0	150
Acenaphthene	10.0	11.0		2.0 U
Acenaphthylene	0.90 U	1.0 U	1.0 U	
Anthracene	0.60	0.60 U	5.4	3.5
Benzo(a)anthracene	0.60 U	0.60 U	0.90	1.2 U
Benzo(a)pyrene	0.60 U	0.70 U	0.70 U	1.3 U
Benzo(b)fluoranthene	0.60 U	0.60 U	0.60 U	1.2 U
Benzo(g,h,i)perylene	0.80 U	0.90 U	0.90 U	1.8 U
Benzo(k)fluoranthene	0.70 U	0.70 U	0.70 U	1.4 U
Chrysene	0.70 U	0.80 U	0.80 U	1.6 U
Dibenzo(a,h)anthracene			<u> </u>	
Fluoranthene	0.70	0.70	5.2	2.2
Fluorene	2,3-	2.4	18.0	14.0
Indeno(1,2,3-cd)pyrene	0.80 U	0.80 U	0.80 U	1.6 U
Naphthalene	12.0	11.0	160	250
Phenanthrene	2.4	2.4	28.0	32.0
Pyrene	0.70 U	0.70 U	3.9	1.4 U
Total SVOCs (including PAHs)	29	28.6	306.6	627.1
PCBs				
Aroclor-1016				
Aroclor-1221				
Aroclor-1232			**	
Aroclor-1242				
Aroclor-1248				
Aroclor-1254	-		-	
Aroclor-1260				
Aroclor-1268				
Total PCB				
Metals				
Aluminum				
Antimony				
Arsenic	3.6 U	3.6 U	44.9	491
Barium				
Beryllium				
Cadmium				
Calcium		.==	T	

GROUNDWATER SAMPLING RESULTS [4g/l] QUANTA RESOURCES SITE, EDGEWATER, NJ

MW-108	MW-108D	MW-109	MW-110
MW-108	MW-108	MW-109	MW-110
7/9/99	7/9/99	7/8/99	7/9/99
2.6	1.1 U	2.2 U	1.1 U
		**	
6.7	3.5	4.2 U	2.8
<u>.</u>		<u> </u>	
			'

	<u> </u>		
		ļ	
6.80	6.80		6.5
103	103	66	-14
41.2	41.2		
30.1	30.1	30.3	30.1
	MW-108 7/9/99 2.6 6.7	MW-108 MW-108 7/9/99 7/9/99 2.6 1.1 U	MW-108 MW-108 MW-109 7/9/99 7/8/99 7/8/99 2.6 1.1 U 2.2 U 6.7 3.5 4.2 U

⁻ indicates the constituent was not analyzed in the sample

ND indicates the constituent was reported as non detect in the sample without information about the reporting limit being provided

U indicates the constituent was reported as non detect in the sample; the value presented represents the reporting limit

J indicates the concentration was estimated in the sample

SITE LOCATION

SOURCE: CENTRAL PARK NY-NJ AND WEEHAWKEN NJ-NY USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLES, DATED 1979.

1000 0 1000 2000 Feet

GEOSYNTEC CONSULTANTS

ATLANTA, GEORGIA

FIGURE NO.	2-1	
PROJECT NO.	GL0520	
DOCUMENT NO.	GA000168	
FILE NO.	FIGURE1.APR	200

CURRENT SITE FEATURES

CROSS-SECTION LOCATIONS

LEGEND

▲ CPT/ROST Location
Soil Boring or Well Location

150	0	150	300	Feet

FIGURE NO.	4-3
PROJECT NO.	GL0520
DOCUMENT NO.	GA000168
FILE NO.	CROSS_X.APR

AERIAL PHOTOS (1940; 1980) OF PAST INDUSTRIAL OPERATIONS

ROOFING PLANT OPERATIONS

WASTE OIL RECYCLING OPERATIONS

1940 AERIAL PHOTOGRAPH

1980 AERIAL PHOTOGRAPH

LEGEND

- Approximate Limits of Coal Tar Roofing Plant
 Approximate Current Property Boundaries
 Approximate Location of Metals Reclaiming / Finishing Plant
 Approximate Location of Vacuum Truck Company

300 Feet

DATE:	16 MARCH 2000	SCALE:	1"= 300 FEET
PROJECT NO.	GL0520	FIGURE NO.	2-3
DOCUMENT N	O. GA000168	FILE NO.	INDUSTRIAL.APR

LOCATION OF GEOPHYSICAL SURVEY

AREIAL PHOTOGRAPH DATED 1998

100 100 Feet

Approximate Property Line Grid Location

FIGURE NO. 4-1

PROJECT NO. GL0520 DOCUMENT NO. GA000168

FILE NO. **GEOPHYSICS.APR**

GEOSYNTEC CONSULTANTS

ATLANTA, GEORGIA

CROSS-SECTION A-A'

CROSS-SECTION C-C'

1	GEOSYN	TEC CO	NSULTANTS	
ATLANTA, GEORGIA				
DATE:	10/15/99	SCALE:	AS SHOWN	
DOCUMEN'	NO. GA000168	FIGURE NO.	4-6	
PROJECT	NO. GL0520-500	FILE NO.	0520F103	

SOIL SAMPLING LOCATIONS

Aerial Photograph Dated 1998

150 0 150 300 Feet

FIGURE NO.	6-1 -	
PROJECT NO.	GL0520	
DOCUMENT NO.	GA000168	
FILE NO.	FILE.APR	

AERIAL PHOTOS (1986; 1989) OF PAST INDUSTRIAL OPERATIONS

1986 AERIAL PHOTOGRAPH

1989 AERIAL PHOTOGRAPH

LEGEND

Approximate Current Property Boundaries

GEOSYNTEC CONSULTANTS

ATLANTA, GEORGIA

16 MARCH 2000 SCALE: DATE: 1"= 300 FEET PROJECT NO. GL0520 FIGURE NO.

DOCUMENT NO. GA000168 FILE NO. INDUSTRIAL.APR

SEDIMENT SAMPLING LOCATIONS

Aerial Photograph Dated 1998

150	0	150	300	Feet

		JE - 114 1
FIGURE NO.	6-8 ,	
PROJECT NO.	GL0520	15.5
DOCUMENT NO.	GA000168	717
FILE NO.	FILE.APR	

GROUNDWATER SAMPLING LOCATIONS ₱ MW-18 ₱ MW-17A ₱ MW-29 MW-12 **♦ MW-110** ₱ MW-1 MW-101 ♦ MW-20 MW-1 ⊕ ⊕ MW-31 MW-102 ₱ MW-106 ₱ MW-109 Aerial Photograph Dated 1998 **LEGEND** Monitoring Wells Screened Above Confining Unit ⊕ Monitoring Wells Screened Below Confining Unit 300 Feet 150 FIGURE NO. 6-9 PROJECT NO. GL0520 GEOSYNTEC CONSULTANTS DOCUMENT NO. GA000168 ATLANTA, GEORGIA FILE NO. GW.APR

TOTAL VOC AND BTEX CONCENTRATIONS IN GROUNDWATER MW-18 ND (ND) MW-17A 0.04 (ND) MW-23 0.011 (ND) MW-9 0.0088 (ND) **MW-14A** 0.0023 (ND) MW-30 0.0028(ND) → MW-29 0.22 (0.012) MW-34 ND (ND) 0.0018 (ND) MW-110 0.076 (0.076) MW-6 1.9 (1.9) 1.0(1.0)MW-11 MW-101 * ND (ND 0.013 (0.013) MW-20 * ND (ND) 0.0055 (0.002) MW-31 MW-102 0.039 (0.036) NE3.9 (23.1) 3.7(3.7)3.2 (3.2) MW=103 MW-7 15.6 (14.4) 2.8(2.8)0.026 (0.026) MW-109 0.0089 (0.0089) Aerial Photograph Dated 1998 **LEGEND** NOTE: Total BTEX concentrations are provided VOC Concentration in Groundwater [mg/L] in parenthesis after Total VOC concentrations **Above Confining Unit Below Confining Unit** for each well location. ND VOC (BTEX) ND VOC (BTEX) 0 - 0.1 VOC (BTEX) 0 - 0.1 VOC (BTEX) 0.1 - 1.0 VOC (BTEX) 0.1 - 1.0 VOC (BTEX) 1.0 -10.0 VOC (BTEX) • 1.0 -10.0 VOC (BTEX) 300 Feet ◆ 10.0 - 23.9 VOC (BTEX) ● 10.0 - 23.9 VOC (BTEX) FIGURE NO. 6-11 PROJECT NO. GL0520 GEOSYNTEC CONSULTANTS DOCUMENT NO. GA000168 ATLANTA, GEORGIA GW.APR FILE NO.

TOTAL SVOC AND PAH CONCENTRATIONS IN GROUNDWATER 0.0057 (ND) MW-17A 0.0023 (ND) 0:013 (ND) MW-14A # ND (ND MW-30 MW-29 MW-34 ND (ND) 9 0.014 (ND) ND (ND) MW-110 0.63 (0.45) MW-6 9.9 (9.2) MW-11 * ND (ND * ND (ND) MW-20 0.019 (0.019) MW-102 MW-114 (30.9) 5.3 (5.3) 2.4 (1.9) MW-7 MW-103 2.5 (2.3) 22.3 (16.0) 1.9 (1.6) MW-109 0.31 (0.25) Aerial Photograph Dated 1998 LEGEND NOTE: Total PAH concentrations are provided SVOC Concentration in Groundwater [mg/L] in parenthesis after Total SVOC concentrations **Above Confining Unit Below Confining Unit** for each well location. ND SVOC (PAH) ND SVOC (PAH) 0 - 0.1 SVOC (PAH) 0 - 0.1 SVOC (PAH) ◆ 0.1-1.0 SVOC (PAH) 0.1-1.0 SVOC (PAH) 4 1.0 - 10.0 SVOC (PAH) ⊕ 1.0 - 10.0 SVOC (PÁH) 4 10.0-100 SVOC (PAH) 10.0-100 SVOC (PAH) 300 Feet 150 100-114 SVOC (PAH) 100-114 SVOC (PAH) FIGURE NO. 6-12 PROJECT NO. GL0520 GEOSYNTEC CONSULTANTS DOCUMENT NO. GA000168 ATLANTA, GEORGIA FILE NO. GW.APR

PCB CONCENTRATIONS IN GROUNDWATER MW-102 Aerial Photograph Dated 1998 **LEGEND** PCB Concentration in Groundwater [mg/L] **Below Confining Unit Above Confining Unit** ND ⊕ ND 300 Feet 150

GEOSYNTEC CONSULTANTS
ATLANTA, GEORGIA

FIGURE NO. 6-13
PROJECT NO. GL0520
DOCUMENT NO. GA000168
FILE NO. GW.APR

PCB CONCENTRATIONS IN GROUNDWATER MW-102 Aerial Photograph Dated 1998 **LEGEND** PCB Concentration in Groundwater [mg/L] **Above Confining Unit Below Confining Unit** ND ⊕ ND 150 300 Feet FIGURE NO. 6-13 GL0520 PROJECT NO. GEOSYNTEC CONSULTANTS GA000168 DOCUMENT NO. ATLANTA, GEORGIA GW.APR FILE NO.

Figure 6-14
Arsenic Eh-pH Diagram (Activity=2.8e-04M = 20.9 mg/L)

Figure 6-17
Arsenic Eh-pH Diagram, Downgradient Wells (Activity=2.8e-04M = 20.9 mg/L)

Figure 6-18
Arsenic Eh-pH Diagram in the Presence of Sulfur Species ([SO4]=1e-08)

Figure 6-20 Chromium Eh-pH Diagram (Activity=6.5e-07M = 0.034 mg/L)

Figure 6-22
Lead Eh-pH Diagram (Activity=2.8e-07M = 0.058 mg/L)

APPENDIX A PROPERTY BOUNDARY SURVEY

All those certain pieces or parcels of land, situate and lying in the Borough of Edgewater, Bergen County, New Jersey, bounded and described as follows:

Tract I:

Beginning at a disk set in the easterly line of River Road (variable width right-of-way), said Point of Beginning being on the third course of the original tract of land in Deed Book 5880, Page 286 and having coordinates in the New Jersey State Plane System of Coordinates, 1927 datum, of N719445.290, and E2186940.313;

Thence S20°29'14"W, along lands now or formerly of Edgewater Associates, Block 92 Lot 3, a distance of 28.99 feet to a rebar with a cap;

Thence S69°30'46"E, continuing along lands of Edgewater Associates, a distance of 327.45 feet to a disk set:

Thence S20°29'14"W, continuing along lands of Edgewater Associates, a distance of 244.92 feet to a disk set:

Thence S69°30'46"E, continuing along lands of Edgewater Associates, a distance of 46.00 feet to a disk set:

Thence \$18°14'14"W, continuing along lands of Edgewater Associates, a distance of 31.46 feet to a disk set;

Thence S71°45'46"E, continuing along lands of Edgewater Associates, a distance of 870.61 feet to point;

Thence S63°30'16"E, continuing along lands of Edgewater Associates and passing over the Bulkhead Line approved by the Secretary of War on January 13, 1931 at a distance of 301.05 feet, a total distance of 735.27 feet to a point in the Pierhead Line approved by the Secretary of War on January 13, 1931;

Thence S28°33'31"W, along the Pierhead Line, a distance of 310.02 feet to a point therein;

Thence N63°22'15"W, leaving said Pierhead Line and passing over the Bulkhead Line at a distance of 440.07 feet, a total distance of 1344.76 feet to a P.K. nail set;

Thence N56°54'45"W, along lands now or formerly of Thomas Heagney, Block 96 Lot 3.01, a distance of 698.07 feet to a disk set in the easterly line of the aforementioned River Road;

Thence N31°56'18"E, along the easterly line of River Road, a distance of 59.69 feet to a disk set;

Thence N41°46'19"E, continuing along the easterly line of River Road, a distance of 76.12 feet to a P.K. nail set:

Thence N31°56'18"E, continuing along the easterly line of River Road, a distance of 234.15 feet to the Point of Beginning.

Containing 13.354 Acres of land, more or less, of which 5.5 Acres is upland.

Said parcel also being known as Block 95 Lot 1 as shown on Tax Map 8 of the Borough of Edgewater, Bergen County, New Jersey.

Bearings recited are New Jersey State Plane Grid, 1927 datum. Distances are ground distances.

Tract II:

Beginning at a point in the southerly line of Block 92.01 Lot 1.01, said Point of Beginning being the Point of Beginning for the original tract of land in Deed Book 5880, Page 286 and having coordinates in the New Jersey State Plane System of Coordinates, 1927 datum, of N719593.148, and E2186759.837;

Thence S69°30'46"E, along the southerly line of Block 92.01 Lot 1.01 and the first course of said original tract, a distance of 93.99 feet to a point in the westerly line of River Road;

Thence along the westerly side of River Road (variable width right-of-way) and the northerly side of Gorge Road (variable width right-of-way), along a non-tangent curve to the right, having a radius of 90.00 feet, an arc length of 117.53 feet, a chord bearing of S84°47'37"W, and a chord distance of 109.36 feet to a point in the eighteenth course of said original tract;

Thence N25°58'45"E, along the eighteenth course of said tract and the easterly line of Block 92.01 Lot 2, a distance of 47.63 feet to the Point of Beginning.

Containing 0.083 Acres of land, more or less.

Said parcel also being known as Block 92.01 Lot 1.03 as shown on Tax Map 8 of the Borough of Edgewater, Bergen County, New Jersey.

Bearings recited are New Jersey State Plane Grid, 1927 datum. Distances are ground distances.

Tract III:

Beginning at a point in the southerly line of Gorge Road (variable width right-of-way), said Point of Beginning being on the sixteenth course of the original tract of land in Deed Book 5880, Page 286 and having coordinates in the New Jersey State Plane System of Coordinates, 1927, datum of N719446.255, and E2186686.033;

Thence S36°07'39"E, along the southerly line of Gorge Road, a distance of 25.78 feet to a point of curvature;

Thence along the southerly line of Gorge Road and the westerly line of River Road (variable width right-of-way) along a curve to the right having a radius of 90.00 feet and an arc length of 102.06 feet to a point of tangency;

Thence S28°50'50"W, along the westerly line of River Road, a distance of 144.78 feet to a point;

Thence NS6°54'45"W, along the thirteenth course of said original tract and the northerly line of Block 93 Lot 3.04, a distance of 61.79 feet to a point on a curve;

Thence along a non-tangent curve to the right having a radius of 792.00 feet, an arc length of 3.34 feet, a chord bearing of N25°51'30"E, and a chord distance of 3.34 feet to a point of tangency;

Thence N25°58'45"E, along the fourteenth course of said original tract, a distance of 100.76 feet to a point;

Thence N71°59'55"W, along the fifteenth course of said original tract, a distance of 2.02 feet to a point;

Thence N25°58'45"E, along the sixteenth course of said original tract, a distance of 129.25 feet to the Point of Beginning.

Containing 0.326 Acres of land, more or less.

Said parcel also being known as Block 93 Lot 3 as shown on Tax Map 8 of the Borough of Edgewater, Bergen County, New Jersey.

Bearings recited are New Jersey State Plane Grid, 1927 datum. Distances are ground distances.

Payl J. Emilius, Jr. N.J.P.L.S. LIC. No. 37186

SEAL

APPENDIX B GEOPHYSICAL SURVEY

Electromagnetic (EM) Conductivity

The electromagnetic (EM) conductivity method is a non-ground contacting method of determining the electrical conductivity of the subsurface. The principle of operation of EM is the induction of an EM signal of known frequency into the subsurface through a transmitting coil. A receiver coil, a known distance away, monitors the resultant signal. The measuring instrument compares the transmitted and received signals and produces an output voltage that is proportional to the subsurface conductivity. Both in-phase and out-of-phase portions of the received signal are measured. The out-of-phase component is related to the apparent conductivity and the in-phase signal is related to the presence of conductive bodies, typically buried metallic objects such as tanks, pipes, drums, etc.

The conductivity measured, known as the apparent conductivity, is a weighted average of the various subsurface conductivities encountered. The effect is not linear with depth, but is dependent upon subsurface layer conductivities and thicknesses as well as coil geometry. The depth of penetration for a given subsurface conductivity distribution is determined primarily by the separation of the transmitting and receiving coils, and secondarily by the axial relationship of the two coils. The EM technique may be affected by cultural "noise" such as fences, power lines, metallic debris, etc. If there is too much cultural "noise", no useful data can be collected. Changes in apparent conductivity related to cultural factors can generally be separated from those due to lithologic or pore fluid changes by the fact that cultural "noise" causes relatively short-spaced and large-amplitude fluctuations in the in-phase component.

For relatively shallow surveys, a Geonics EM31 conductivity meter with a digital recorder is used. The EM31 is a portable instrument designed for shallow geophysical applications and has a fixed intercoil spacing which has a depth of penetration on the order of 10 to 15 feet. When the EM31 is connected to a digital recorder, an apparent conductivity reading, percent of in-phase response, and station location are recorded at regular intervals. Buried metallic objects may be located by excursions of the in-phase component from a "background" level. Changes in the apparent conductivity can be caused by conductive leachate, lithologic changes, etc.

EM61

The EM61 is a high-sensitivity metal detector manufactured by Geonics, Ltd. This instrument is designed to detect buried metal directly beneath it and yet be insensitive to interference from nearby surface metal such as fences, buildings, cars, etc. The EM61 generates a pulsed primary magnetic field that induces eddy currents in nearby metallic objects. Two receiver coils at different distances from the ground measure the decay of the eddy currents with time. The measuring instrument compares the transmitted and received signals and produces an output voltage related to the presence of metallic objects.

The response is not linear with depth, but is dependent upon several factors such as the size, shape, and depth of the metallic object. The EM61 can detect both ferrous and nonferrous metallic objects. The EM61 may be affected by cultural "noise" such as fences, power lines, metallic debris, etc. within a five to ten foot radius.

The EM61 is connected to a digital data recorder and the data from both channels are stored along with the line number and station numbers. The data are recorded in one of three modes. The first mode is to record at regular times with the station location determined by event markers entered by the operator. The second mode allows the operator to record data at specified distances while the station location is updated by the recorder. The third mode involves attaching wheels to the transmitter/receiver that automatically triggers the recorder at specific intervals along the survey line. Readings are usually close together (less than one foot apart).

Buried metallic objects are identified by increased readings from either channel. The readings are not affected by nonmetallic conductive targets such as saltwater or conductive plumes. While recording data in the field, the operator can identify buried targets by listening to an audio speaker that has a response proportional to the signal output.

After data have been recorded, they are downloaded and processed using the DAT61 computer software supplied by Geonics, Ltd. Further processing and plotting is accomplished using other software.

Data Scale:

Baseline = 50 mS/m

= 400 mS/m

Data Scale:

Baseline = 0 mV

----- = 4000 mV

APPENDIX C TEST TRENCH LOGS

TEST TRENCH 1 EXCAVATED: 9 NOV. 1998

LEGEND

Gravel fill

Gravel fill containing coal tar

Brown clayey soil, some large rocks

Heavily stained soil, coal tar odor and cinders

Heavily stained soil with some oil-like coal tar, coal tar odor

TEST TRENCH 2 EXCAVATED: 9 NOV. 1998

LEGEND

Crush rock and dark brown soil

Lightly stained soil and flyash

Heavily stained black soil, and debris (wood and rocks)

TEST TRENCH 3 EXCAVATED: 9 & 10 NOV. 1998

TEST TRENCH 4 EXCAVATED: 19 NOV. 1998

TEST TRENCH 5 EXCAVATED: 20 NoV. 1998

TEST TRENCH 6 EXCAVATED: 20 NOV. 1998

TEST TRENCH 7 EXCAVATED: 22 NOV. 1998

LEGEND

Sandy fill with black staining and strong petroleum hydrocarbon odor

TEST TRENCH 8 EXCAVATED: 22 NOV. 1998

S N

LEGEND

Water table

Concrete

Sandy fill with black staining and some oil-like coal tar

Solid hard black coal tar pitch with some heavily stained sandy fill containing sticky coal tar

Sandy fill with black staining

Brown sandy fill with large boulders

Dark brown sandy fill

Gravel fill with large boulders, wet, stained black, some sticky coal tar

TEST TRENCH 9 EXCAVATED: 21 Nov. 1998

W

APPENDIX D BORING LOGS

DRO IECT NA	ME: Quanta Resources	TEST BORIN	GL0520		BOB	NG	PAGE 1 OF		
LOCATION: B			:633488						
DRILLING CO.		RIG: Canterra CT-25			DRIL				
	IAMETER: Mud Rotary				LOG				
	ED- 06 Nov 98	COMPLETED-	06 Nov	98			D BY: E. Triplett		
GLEVATION DEPTH (FEET) (FEET)	DESCR	IPTION	SYMBOL	WELL DIAGRAM	Blov 6 ir	rs/ Rec i. (in.	DRILLING LOG		
13.6	FILL: brown, sandy, some	small gravel, some silt.			13 28	<u>l°</u>	0830: Commence drilling with 4.7 in ID button bit. @ 1 ft: split spoon refusal. @ 1.8 ft: stop, too much of angle.		
					51 44 16	6	Offset and restart, drill to 2 ft.		
8.6-	@ 5 ft: some gray silt.				13 15 12	- -	@ 6 ft: spoon refusal. very difficul		
	@ 7 ft: diabase boulder. @ 7.5 ft: brown, medium @ 8 to 9.9 ft: boulder.	sand.			50/	5 6	drilling. 0930: Switch to 6 in. tri-cone bit and 2-3/8 in. ID (3 in. OD) rods.		
3.6-					66/	+	@ 9.9 ft: break through boulder. @ 10 ft: spoon refusal, sluff.		
					100	╁	@ 11 ft: oil sheen observed in much slight coal tar odor, 0.0 ppm.		
14.0	GYPSUM FILL: trace sma light gray, hard.	l gravel, off-white to				1	@ 14 to 51 ft; difficult drilling.		
-6.4-									
-0.4					50/	4 0	@ 20 ft: spoon refusal.		
	·								
-11.4-	ı								
	. *								
-16.4		ing sa							
					-				
-21.4-	SANDSTONE CONGLOM @ 34 ft: shale	ERATE							
	@36 ft: trace silt.				ļ. -				
-26.4			***************************************		·		1200: break for lunch.		

			TEST BORIN			1	PAGE 2 OF			
PROJECT NAME: Quanta Resources PROJECT NO.: GL0520 BORING ID: B-1										
	TION: B			:633488	.549		ELEV.:13.592			
	ING CO.		RIG: Canterra CT-25	50		DRILLER				
		IAMETER: Mud Rotary ED- 06 Nov 98	COMPLETED-	OC No:	. 00	LOGGED				
		ED- 00 MOV 38	COMPLETED-	O6 Nov	MEIT					
ELEVATION (FEET)	(FEET)	DESCR	RPTION	SYMBOL	DIAGRAM	Blows/ Rec 6 in. (in.	DRILLING LOG			
-26.4							1230: resume drilling			
-31.4										
-31.4										
-36.4	1			**********						
	51.0	Boring terminated at 51 f	<u> </u>	11			1325: Terminate boring, plug and abandon.			
-41.4	-						Grout mixture: 7 gal. water to 1 bag (94 lbs.) type I portland cement and 5 lbs. bentonite.			
	-		. *							
			-							
						.				
-46.4		·					·			
	-				2 4		·			
	-									
e 4 - 4				ľ						
-51.4	7	•		1]].				
	1									
	'									
	' '									
	1 .									
-56.4	<u>, </u>	,			}					
	1 .									
	. .		•	.						
		•		ŀ						
	1									
-61.4	너 -			1						
}		1					1			
1		4								
-66.4	<u> </u>	<u> </u>					<u> </u>			

PROJEC	T NAI	ME: Quanta Resources		GL0520	-10	BORIN	iG	ID: B-2	
LOCAT				E:633539.617					
DRILLIN	IG CO.	: Diamond Drilling	RIG: Canterra CT-2	50		DRILL	ER	M. Kurzynowski	
		IAMETER: Mud Rotary				LOGG	ED	BY: J. Brandes	
		ED- 09 Nov 98	COMPLETED-	11 Nov 98		CHEC	KE	D BY: E. Triplett	
ELEVATION (FEET)	DEPTH (FEET)		UPTION	SYMBOL DIAGRA	4	Blows/ 6 in.	Rec (in.)	DRILLING LOG	
11.5		FILL: large boulders, brick gravel, silt. @ 1 ft: brown, sandy soil	, concrete, sand			10 refueal	2	0730: Commence drilling with 6 in tri-cone bit (3 in. OD rods).	
11.5 6.5-	-	@ 3 ft: brown sandy soil	with gravel.			19 32 refusal	6	No mud circulation, mud loss into boring. Drive split spoon 1 ft. 0800: collect 98313-01 @ 3 - 4 ft @ Sample FID =2 ppm (background	
		@ 6 ft: sandy soil with gr brick debris.	avel and			10 100/4	6	Drive split spoon 10 in. refusal. FID = 20 ppm.	
1.5-									
		@ 11 to 14 ft: large diaba and sandstone boulder	15 0 5.			13 50/6 refusal	8	Drive split spoon 1 ft. refusal, Diabase/sandstone fragments, brick probably sluff. 0935: Rig head main seal breaks	
	-					4		 11 ft. Drilling suspended for repairs. 10 Nov 98, 1000: Drilling resumes 	
-3.5~	_	0.406				5 4 3	0	using tri-cone 6.75" bit. @ 14 ft: break through boulder; easier drilling.	
		@ 16 ft: silty.			1	2 6 5 4	3	. , , , ,	
-8.5	- -	@ 18 ft: brick debris.				6 WOR refusal	5	Drive split spoon to 19.5 ft. 1145 Break for lunch. 1245 Resume drilling; brick debris.	
-13.5-	_							Almost get mud circulation back. Drive split spoon, refusal.	
	29.0					refusal	0	Brick, sandstone, concrete debris, sluff. Added revert to the boring to build viscosity in an attempt to seal off boring.	
-18.5-	-	Boring terminated at 29 fi						1300: Terminate boring. 11 Nov. 98, 0700: plug and abandon boring. Grout Mixture: 7 gal. water to 1	
	-							bag (94 lbs.) type I portland cement and 5 lbs. bentonite.	
-23.5									
-28.5	_		·						

_			·	TEST BORING						PAGE 1 OF 2	-
_			ME: Quanta Resources		GL052			ORIN			
		ION: B			633598	3.794	_			ELEV.:5.652	
D	RILLIN	IG CO.	: Diamond Drilling	RIG: Canterra CT-25	0			RILL	ER:	M. Kurzynowski	ŀ
N	1ETHO	D & D	IAMETER: Hollow Ster	n Auger/Mud Rotary			TL	OGG	ED	BY: J. Brandes	
			ED- 11 Nov 98	COMPLETED-	13 Nov	98				D BY: E. Triplett	
lau	EVATION	DEPTH				WELL	<u>- آ</u>	Blows/ 6 in.			1
	(FEET)	(FEET)		PTION	SYMBOL	DIAGRAM		6 in.	(in.)		1
97	5.7		FILL: wood, coal tar, sand	, silt, gravel.			, i			1310: Commence drilling. Drive	ŀ
3	2	1	.@ 4 in: 2" thick wood lay	er.				100/4	4	split spoon. @ 4 in: wood, 2 in. thick; auger	ı
7		-						15	-	to 2 ft.	1
a				•				7	2		ŀ
7		·					ŀ	6 5			Г
7			@ 4 ft: wood layer.					19 23		Wood, less staining above wood	l
nnollantaiborlogsis-3	0.7-							11	14	layer than below.	1
9			@ 6 to 7 ft: coal tar, woo	<i>d</i>				15	-		ı
ង្គ			•	u.				15	12		L
3			@ 7 to 8 ft: sandy silt.	•				19 22			ŀ
4	·	1	@ 8 ft: wood, coal tar.					7			
ã	i	1						12 15	10		ı
1	-4.3-	-						17	_		ı
1								18 22 17	16	· ·	ľ
1			@ 11 ft: coal tar.					17 ·	ľ		ĺ
		12.5	@ 11 to 12 ft: white/gray		1////			4		@12.5 ft: dayey silt.	
1		1,512	SILTY CLAY: gray, plastic					0	13	1405; callect 98315-06 @ 13-14'.	
ľ		4					ä"	1		694	
1	-9,3-	, i					·	1	24	Silt with clay. 1415: collect 98315-07 @ 14-15'.	ı
	-3.5							1/18"	24	Terminate drilling for day, set up	ı
1		1								hole for mud rotary.	ľ
1	1	-					. *			12 Nov. 98, 0710: continued drilling with mud rotary.	ľ
ıl										diffinitia Andi finda focaty.	
											İ
1		1	. •								ı
1	-14.3	-	@ 20 ft: silty clay with o	ester				1		,	ı
1			shell fragments.	,				1 0	10		ı
1			· .					ĭ			ı
1											l
1			•								ı
		}	,	•	1						ĺ
	-19.3	_			11				<u> </u>		
	,	·	@ 25 ft: abundant oyster trace of fine sand.	shells, silt, gray,				3			į
		1	u ace of time sand.		1			7	12		ĺ
		-						1.4			
		4		•	<u> </u>					114 dd(0	l
1					1					Hard drilling; shells.	ĺ
		1			[l
	-24.3-	-			[9		Oyster shells, sandstone fragments	
1		-	0.014		[27 50/6	10	sand.	l
	į		@ 31 ft: silty sand, brow	n, medium.				100/6		@32 ft: wood, difficult drilling.	
	į]	@ 32 to 26.5 ft: wood, o	yster shells, sandstone						Magnet put in screen, some very small metal filings were present.	ı
		-	fragments, metal, slight o							@ 32.5 to 33.5 ft: very hard drilling	1
		-	@ 33 ft: less wood in mu @34.5 ft: additional woo	u. d present in mud						(0.5 hr./ft).	
	-29.3-	_	Cotto iti addittoridi Moo	a brazone in mode							ŀ
	-23.3										l
1		36.5		· · · · · · · · · · · · · · · · · · ·				· · · · · · · ·		@ 36.5 ft: break through hard layer	1
1		30.0	SANDSTONE CONGLOM	ERATE: weathered, oyster				100/4		penetrated into another hard layer.	l
			shells, some shale, fairly	sort, hardening with						gravel, oyster shells.	
			depth, red.	· ·						•	
1	04.0										1
L	-34.3	L					L				1

IPRO IF	CT NAM	ME: Quanta Resources	PROJECT NO :	GL052		R	ORIN	ıG	PAGE 2 OF 2 ID: B-3
	ION: B			633598		_			ELEV.:5.652
	NG CO.		RIG: Canterra CT-250						
		IAMETER: Hollow Ster			· · ·		OGG		
		ED- 11 Nov 98	COMPLETED-	13 No	v 98				D BY: E. Triplett
ELEVATION (FEET)		DESCR		SYMBOL	WELL DIAGRAM		Blows/ 6 in.	Rec. (in.)	DRILLING LOG
-34.3						,	16 50/2	12	Mostly sluff, red sandstone.
-39,3~		@ 42.5 ft: additional shal	e,				. •		
-39,3				- 444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			100/1	o	Drive split spaon 1 in. Oyster shells observed in tip. 1145 Break for lunch. 1245 Resume drilling.
-44.3-						-	100/0	0	Split spoon refusal.
-49,3-	-	@ 55 ft: light yellowish-g conglomerate.	ray sandstone						@ 55 ft: Terminate drilling. 13 Nov. 98, 0700: Commence rock coring with NQ core
	57.0	SILTSTONE/MUDSTONE: yellow-gray.							barrel (1-7/8 in. ID, 3in. OD).
-54.3-	60.0	Boring terminated at 60 f							0900: Complete coring at 60 ft. Recovery = 5 ft. Plug and abandon boring.
	-								Grout Mixture: 7 gal. water to 1 bag (94 lbs.) type I portland cement and 5 lbs. bentonite.
-59.3-									
-64.3-	- - -								
-69.3									
				· :					·
-74.3]							

TEST BORING RECORD

1	PROJEC	CT NAM	ME: Quanta Resources PRO	JECT NO.:	GL052		ВО	RINC	ì	D: B-4	
	LOCAT				32914		GROUND ELEV.:6.623				
	DRILLIN	IG CO.	: Diamond Drilling RIG:	Canterra CT-250				LLE			
			AMETER: Mud Rotary					GGE			
			ED- 16 Nov 98 CON	APLETED- 1	17 Nov				_	BY: E. Triplett	
	ELEVATION (FEET)	DEPTH (FEET)	DESCRIPTION		SYMBOL	WELL DIAGRAM	6	ows/R	6C n. 1	DRILLING LOG	
1-99	6.6	0.7	ASPHALT	and appears			-			1045: Commence drilling.	
10-0		. 1	FILL: brown sand, gravel, brick fragments.	alia couctata					1		
ī							-				
ME		1	@ 3 ft: crushed rack and concr	ete.					İ		
2	,	1 1					ŀ		١		
Se	1.6-		@ 5 to 6 ft: light gray process (nud.					١		
200		1 1	@ 6 to 7 ft; sandy fill, stained.	•			1	- 1			
90		1 1	@ 7 to 8.5 ft: sandy fill, moist,	stained.			-	- 1	-	*	
Š							-		ı		
N:\OUANTA\BOBLOGS\B-4.PL3 MED-1 10-01-99			@ 9 ft; hard, dense, black coal	tar.	<i>\////</i>			. [
Z	-3.4~	1 +	@ 10 to 11 ft; wood.	**	<i>\////</i>				-		
]	•				.]	- }	j		
	·	12.0	SAND: brown, medium grained	some coarse, wet, no				1	ı		
		1 1	visible staining.						ļ	. *	
									1	; ·	
	-8.4~	-						- 1	ı	@ 15 ft: driller fluid appears to	
		1	•						1	contain ash, coal tar, oil.	
		1 -						İ			
	<u> </u>	-					-	1			
	ŧ	-					ı		1		
	-13.4-		·				-	ļ.			
		-	,					- 1			
	'	ļ · -							1		
			. *					- 1			
				•				1	1		
	-18.4-	- إ						1	-		
	1.							ò	٥		
		27.0	2// 77/ 2/ 41/ :				-	ō	4		
	1		SILTY CLAY: brown to reddish	orown, piastic.					١		
	1										
	-23,4-	<u> </u>			[-	_	_	Dadioh heaves -t	
								8 11 12	9	Redish brown clay. 1305: collect 98320-04.	
	1	. .] []		13			
	(
•]]			<u> </u>						
		1									
	-28.4-] · [·		1 1		18 22	24	Redish brown clay.	
		1			1			29 34	-4		
	1 .		**] [
		1			[1					
	-33.4					1 💹					
	-33.4		1		٠	1000000		 -		·	

DOCATION: B-4 DRILLING CO.: Diamond Drilling Rig: Canterra CT-250 DRILLING CO.: Diamond Drilling Rig: Canterra CT-250 DRILLING CO.: Diamond Drilling Rig: Canterra CT-250 DRILLING CO.: Diamond Drilling Rig: Canterra CT-250 DRILLING CO.: Diamond Drilling Rig: Canterra CT-250 DRILLING CO.: Diamond Drilling Rig: Canterra CT-250 DRILLING CO.: Drilling Rig: Canterra CT-250 DRILLING CO.: Drilling Rig: Canterra CT-250 DRILLING CO.: Drilling Rig: Canterra CT-250 DRILLING CO.: Drilling Rig: Canterra CT-250 DRILLING CO.:	000 1507	TALAS	IC. Quanta Bassier -	TEST BORIT			les-	D11-14		D: B-4
DRILLER M. Kurrynov METHOD & DIAMETER: Mud Rotary LOGGED BY: C Evanko/J.				\$						
ACTION & DIAMETER: Mud Rotary LOGGED BY: C Evanko J.						.010	-			
A3.4 50.0 CLAYEY SILT: brown to reddish brown. SAND: medium to coarse, some shale fragments, reddish brown. TO.00: To.00:										
### PERMIND OFFIN FEED DESCRIPTION SYMBOL DAGARAM Some is a DRILLIMG LOG ### CLAYEY SILT: brown to reddish brown. 11					17 Nov	98				
-38.4 45.0 CLAYEY SILT: brown to reddish brown. -38.4 45.0 CLAYEY SILT: brown to reddish brown. -43.4 50.0 SAND: medium to coarse, some shale fragments, reddish brown. -48.4 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4	ELEVATION D	DEPTH				WELL	В	lows/ R	lec.	
-38.4 - 45.0 CLAYEY SILT: brown to reddish brown. -38.4 - 45.0 CLAYEY SILT: brown to reddish brown. -43.4 - 50.0 SAND: medium to coarse, some shale fragments, reddish brown. -48.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4	-33.4							14	18	
-38.4 - 45.0 CLAYEY SILT: brown to reddish brown. -43.4 - 50.0 SAND: medium to coarse, some shale fragments, reddish brown. -48.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 - 55.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -58.4 - 56.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -68.5 ft. thardening downward, reddish brown. -69.6 ft. thardening do	:]	·					1/		•
SAND: mediam to coarse, some shale fragments, reddish brown. @ 52.5 ft: sand and gravel. SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. 1500: Terminate drilling@68 ft. 17 Nov. 98, 0645: cont Oil sheen observed in m -53.4-		1	;						1	•
SAND: mediam to coarse, some shale fragments, reddish brown. @ 52.5 ft; sand and gravel. SANDSTONE CONGLOMERATE: weathered, fairfy soft, hardening downward, reddish brown. SANDSTONE CONGLOMERATE: weathered, fairfy soft, hardening downward, reddish brown. 1500: Terminate drilling @68 ft. 17 Nov. 98, 0645; cont Oil sheen observed in m SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Boring terminated at 72 ft. Boring terminated at 72 ft. SANDSTONE And gravel. 1500: Terminate drilling @68 ft: 17 Nov. 98, 0645; cont Oil sheen observed in m 466.5 ft: hard drilling. @67 ft: (stop drilling). Changeout mud. 0800: Commence rock NO core barrel. 0900: Terminate coring Recovery = 4 ft. NOD = 0 (all broken up Grout Mixture: 7 gal. w bag [94 bs.) type I port cement and 5 bs. bent. (110 gals).		1					- 1	1	١	•
SAND: mediam to coarse, some shale fragments, reddish brown. @ 52.5 ft; sand and gravel. SANDSTONE CONGLOMERATE: weathered, fairfy soft, hardening downward, reddish brown. SANDSTONE CONGLOMERATE: weathered, fairfy soft, hardening downward, reddish brown. 1500: Terminate drilling @68 ft. 17 Nov. 98, 0645; cont Oil sheen observed in m SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Boring terminated at 72 ft. Boring terminated at 72 ft. SANDSTONE And gravel. 1500: Terminate drilling @68 ft: 17 Nov. 98, 0645; cont Oil sheen observed in m 466.5 ft: hard drilling. @67 ft: (stop drilling). Changeout mud. 0800: Commence rock NO core barrel. 0900: Terminate coring Recovery = 4 ft. NOD = 0 (all broken up Grout Mixture: 7 gal. w bag [94 bs.) type I port cement and 5 bs. bent. (110 gals).		1	•				١.			
43.4 - 50.0 SAND: medium to coarse, some shale fragments, reddish brown. @ 62.5 ft: sand and gravel. 48.4 - 55.0 SANDSTONE CONGLOMERATE: weathered, fairly saft, hardening downward, reddish brown. 53.4 - 55.4 - 68.0 SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. @ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Boring terminated at 72 ft. Boring terminated at 72 ft. 68.0 Cornence tock NQ core barrel. Ogo: Terminate coring Recovery = 4 ft. RQD = 0 (all troken up bang 94 fts.) type 1 por cement and 5 fbs. bent (110 gals).	-38.4	45.0	CLAYEY SILT; brown to r	eddish brown.	****		H	12	┪	collect geotech, sample 84-01
43.4 - 50.0 SAND: medium to coarse, some shale fragments, reddish brown. —6 52.6 ft; sand and gravel. —6 52.6 ft; sand and gravel. —5 5.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. —5 5.4 - — — — — — — — — — — — — — — — — — —		1		,				20	16	(45'-47')
A8.4 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. The sandstone in mose of sp. 1500: Terminate drilling @58 ft. 17 Nov. 98, 0645: cont Oil sheen observed in m. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Soft management of the sarrel, 0900: Terminate coring Recovery = 4 ft. RDD = 0 (all broken up Grout Mixture: 7 gal. w. bag (94 bs.) type I port cement and 5 bs. bent (110 gals).		4					-	23	4	· ·
-48.4 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairl		- 4			**************************************			1	ŀ	
-48.4 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. -53.4 68.0 SANDSTONE CONGLOMERATE: weathered, fairl	•	1						1		
-48.4 55.0 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, hardering downward, reddish brown. -53.4 SANDSTONE CONGLOMERATE: weathered, fairly soft, harderi					**************************************					
-58.4	-43.4	50.0		, some shale fragments,					7	
### Part	.]	.1	reddish brown.				1	26	12	
-53.4- -58.4- -63.4- Boring terminated at 72 ft. SANDSTONE CONGLOMERATE: weathered, fairly soft, hardening downward, reddish brown. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Solution at 12 ft. Gravel, cobble and weas sandstone in nose of sp 1500: Terminate drilling end 58 ft. 17 Nov. 98, 0645: cont Oil sheen observed in metalling end of 7 ft. (stop drilling) changeout mud. 0800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up bag 94 lbs.) type I pot cement and 5 lbs. bents (110 gals).	·	1	•				-		-	:
-53.4- -58.4- -68.0 -63.4- -63.4- -72.0 -58.4- -69.68 ft: Transition Zone - greenish bedded sandstone to purplish siltstone/mudstone. -69.4-		4	@ 62.5 ft; sand and grav	el.				1		
-53.4	i	4	•					.	1	
-53.4	484	55.0		 						
-53.4- -58.4- -68.0 -63.4- -63.4- -63.4- -69.68 ft: Transition Zone - greenish bedded sandstone to purplish siltstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. -63.4- -63	40.4	33.0					١.			Gravel, cobble and weathered
-53.4- -68.0 -63.4- -63.4- -72.0 -59.4- -69.6 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. -63.4- -63.4- -63.4- -63.4- -72.0 -69.6 ft: hard drilling. -63.4- -69.6 ft: hard drilling. -69.6 ft: hard drill	•	1	2011' tigraetiilis aamiimaii	u, teadish drawn.			. ["	00/6	1	sainistique at tiose di shiit shooti
-53.4- -58.4- -68.0 -63.4- -63.4- -72.0 -698 ft: Transition Zone - greenish bedded sandstone to purplish siltstone/mudstone. -63.4- -63.4- -63.4- -63.4- -72.0 -698 ft: 17 Nov. 98, 0645: cont Oil sheen observed in m -61.4- -62.4- -63.4- -63.4- -63.4- -63.4- -63.4- -63.4- -63.4- -63.4- -63.4- -72.0 -63.4- -63.4- -72.0	I	1			*********				٦	
-53.4- -58.4- -68.0 -63.4- -63.4- Boring terminated at 72 ft. -58.4- -69.4- -6	1	1		•			- [1500: Terminate drilling for day.
-53.468.0 -68.0 -63.4- -72.0 -69 68 ft: Transition Zone - greenish bedded sandstone to purplish siltstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. -63.4- -72.0		- 1					-		1	
@ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. 63.4- Boring terminated at 72 ft. @ 66.5 ft: hard drilling. @ 67 ft: (stop drilling) Changeout mud. 0800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).	-53.4-	- 4						l	١	Oil sheen observed in mud.
@ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. 63.4- Boring terminated at 72 ft. @ 66.5 ft: hard drilling. @ 67 ft: (stop drilling) Changeout mud. 0800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		- 4						- 1	ı	
@ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. 63.4- Boring terminated at 72 ft. @ 66.5 ft: hard drilling. @ 67 ft: (stop drilling) Changeout mud. 0800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		1						ı	1	
@ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. 63.4- Boring terminated at 72 ft. @ 66.5 ft: hard drilling. @ 67 ft: (stop drilling) Changeout mud. 0800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).]		v.			- }	- 1		
@ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Page 194 ft. Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		1						- 1		
@ 68 ft: Transition Zone - greenish bedded sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Page 194 ft. Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		1						- 1		
sandstone to purplish siltstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Page 19	-58.4	4						1	1	
sandstone to purplish siftstone/mudstone. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Page 194 ft. SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. SILTSTONE/MUDSTONE: slightly metamorphosed, O800: Commence rock NQ core barrel. O900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		- 1						.		
68.0 SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. Changeout mud. 0800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		. 1						1	١	@ 66.5 ft: hard drilling.
SILTSTONE/MUDSTONE: slightly metamorphosed, fractured, red-purple. O800: Commence rock NQ core barrel. 0900: Terminate coring Recovery = 4 ft. RQD = 0 (all broken up bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		68.0						1	- (
-63.4- 72.0 Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft. Boring terminated at 72 ft.			SILTSTONE/MUDSTONE:	slightly metamorphosed,				1		0800: Commence rock coring w
Recovery = 4 ft. RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).		1	nactured, rearpurpie.					1	-	NQ core barrel. 0900: Terminate coring at 72 ft.
RQD = 0 (all broken up Grout Mixture: 7 gal. w bag (94 lbs.) type I port cement and 5 lbs. bento (110 gals).	-63.4	1	•	•	安廷			1		Recovery = 4 ft.
bag (94 lbs.) type i port cement and 5 lbs. bento (110 gals).		- 1			经经			1	1	RQD = 0 (all broken up).
bag (94 lbs.) type i port cement and 5 lbs. bento (110 gals).	ı	72.0	Paring terminated at 72 6		- 545			- 1	1	Grout Mixture: 7 gal. water to 1
(110 gals).		1	boning terminated at 72 t	ι,				1		bag (94 lbs.) type I portland
		j			1			- 1		cement and 5 lbs. bentonite
-68.4		1								fr 10 Baiot.
	-68.4	4		,	1			I		· · - · · · ·
		ł						1		
		- 1		•	1.00	18 C		. [ut e e
	1	1	•		Para sant			ŀ	1	
		1		•		,,		1		
-73.4	-73.4	1	i		1			- 1		

TEST BORING RECORD

PAGE 1 OF 1

		ME: Quanta Resources W-101		GL0520 32734.82	BORING	ID: MW-101 ELEV.:8.12
RILLIN			RIG: Canterra CT-250		DRILLER:	
		AMETER: Hollow Ster	<u> </u>		LOGGED	
		ED- 17 Nov 98	COMPLETED-	17 Nov 98	CHECKE	
EVATION (FEET)	DEPTH (FEET)	DESCR	UPTION	SYMBOL DIAGRAM	Blows/ Rec. 6 in. (in.)	
5.8	0.0	FILL: brown sand, gravel, concrete debris.	small brick and		26 50/3 8	1200: Commence drilling.
		@ 2 ft: black cinders.			50/2 1	@ 2 ft; coal tar odor.
0.8-	-				5 50,00 1	@ Sample FID = 400 ppm
		@ 6.5 ft: wet. @ 7 ft: hard coal tar pitcl			## 40 8 42 8	Wood in spoon tip. 1240: collect 98321-01 6-7'
		e / it: naro coal tar pitci	n and wood.		50/2 50 9 4	@ Sample FID = 100 ppm. Hard coal tar pitch in spoon tip.
-4.3-	11.0				7 5 20 12 8	
		SILTY SAND: redish-brow	yn, wet, fine to medium.		12	1305: Collect 98321-02 13-14
	1				6 24 13 4	Sample FID = 10 ppm.Slight coal tar adar.14-16' callect geotech, sample
-9.3		•			6 24	MW-101 (14-16'), no coal tar odor.
		•			12 11 8	
-14.3-	20.0-	· 			13 29 40 44	
14.3	-	Boring terminated at 20 f	t.			1330: Terminate drilling and set well.
-19.3-	-					
	-	_				
	•					
-24.3-						
	-	•				
-29.3-	-					
				1 1		

00.160		15. O 1. D		NG RECORD	·	Inon:	110	PAGE 1 OF
		ME: Quanta Resources W-102		GL0520 E:632914.9	11	BORI		ID: MW-102 ELEV.:6.62
RILLIN			RIG: Canterra CT-2			DRIL		
		AMETER: Hollow Ster				LOGO		
		ED- 16 Nov 98	COMPLETED-	16 Nov 9	8			D BY: E. Triplett
EVATION (FEET)	DEPTH (FEET)		UPTION	SYMBOL DI	WELL IAGRAM	Blows 6 in.	/ Rec (in.)	
4.1	0.0	ASPHALT.	4.1.1					0800 Commence drilling.
1	·"]	FILL: brown sand, gravel, concrete fragments.	buck and				1	
	1					9	T	
	1	@ 3 ft: crushed rock and	concrete,			15 50/2	6	
į	· 1		•				1	Auger to 5 ft.
-0.9	• -	@ 5 to 6 ft: light gray pro	cess mud.			1	+	
- 1	1	@ 6 to 7 ft: sandy fill, st	ained.			3 2	24	
	- 1	@ 7 to 8.5 ft: sandy fill,				9	╁	
	. 1	stained.				37 50/3	24	
	- 1	@ 9 ft: hard, dense, blac	k coal tar			100/	' -	Refusal on wood, auger through
-5.9	4	@ 10 to 11 ft; wood.	er mag er res			37 100/	4	approximately 1 ft wood layer.
ŀ	•	G to to it it; word:					-	Drill to 12 ft.
	12.0	CAND. beauty		<i>\////</i> 4			-	0920; collect 98320-01.
	4	SAND: brown, medium g no visible staining.	tained some coarse, we	***************************************		2 2	12	
	- 1	•				_2	1	
10.9						1 2 3 2	18	
				***************************************			1_	
l						3 6	24	
. 1		'	•			9	127	•
	1			***************************************		7 7	Τ.,	
			T.			12 11	112	
-15.9						6 9		0950; collect 98320-03.
						14	24	1000: Terminate drilling and set well.
	22.0	Boring terminated at 22 f	t. — —			10	1	
·							1	
	-	,						
20.9	-							•
.	-		•			-	1	·
l						ŀ	1	•
	-						1	
							ľ	
-25.9-						ı		
	.]	,						
.					·			
	1					ž.		
-30.9	-							
		;				.	1.	
			ŧ					
	-							·
-35.9		·					丄	<u> </u>

BO IFO	T NAM	//E: Quanta Resources	TEST BORIN			BORI	NG	PAGE 1 O
		W-103		GL0520 :633202.67	7			ELEV.:6.00
	G CO.		RIG: Canterra CT-25			DRIL		
		AMETER: Hollow Ster				LOG		
		ED- 11 Nov 98	COMPLETED-	11 Nov 98	3			D BY: E. Triplett
EVATION (FEET)	DEPTH (FEET)		иртюн	1 W	ÆLL GRAM		s/ Rec	
3.6		FILL: sandy wood, brick, cinders.	concrete, coal tar,			9 17 12 20	112	0830: Commence drilling. 0848; callect 98315-01 @ 0-1
		@ 3 ft: cinders, coal tar,				22 26 27	12	Cinders, coal tar. 0900; collect 98315-02 @ 3-4
-1.4-		@ 4 ft: brick, cinders, sta	ined sand.		<u>-</u>	10 12 14	1.,	
						6 6 5	 	Sluff.
						9 9	+	0930: collect 98315-03 @ 9-10
-6.4-	9.0	SILTY SAND: brown to gr coarse, coal tar odor, slig				344	12	
		@ 11 to 13 ft: heavy stai	ning.	***************************************		8 9	24	0050 11 1005
		@ 13 ft: brown, silty san	d.	***************************************		4 6 9	24	0950; collect 98315-04 @13-1
-11.4-	_	@ 14 to 15 ft: stained. @ 15 to 16 ft: clean.				6 9 12	24	
		@ 16 to 16.5 ft: stained. @ 16.5 to 18 ft: clean.				14 11 13 16	1.	
-						19 3 6	12	
-16.4-		@ 20 ft: heavy staining,	2 in thick product zone.			8 13 5 6	-	Staining on outside of sample in
	21.0	CLAYEY SILT: gray, mart	eled.		_,	111	24	split spoon. Outside of sample discarded.
	22.0	Boring terminated at 22 f	t					0950: collect 98315-05 @21-2 Terminate drilling and set well.
-21.4-	-					`		
	-				•		1	
	. •							
-26.4	-		•					
	-							
	-							
-31.4-	-							
		e.						
-36.4	-							

PAGE 1 OF 1

TEST BORING RECORD

			TEST BORI							PAGE 1 OF
		ME: Quanta Resources			3L0520			RIN		
	ION: M				33599	.20				ELEV.:5.65
	NG CO.		RIG: Canterra CT-2					ILLE		
		AMETER: Hollow Ster ED- 13 Nov 98	n Auger 4.25 in I.D COMPLETED-		13 11-	. 00		GGE		BY: J. Brandes DBY: E. Triplett
		ED- 13 NOV 38	COMPLETED-		3 Nov	Mert 38				DBY: E. Inpiett
ELEVATION (FEET)	(FEET)	DESCR	UPTION .		SYMBOL	DIAGRAM		lawe/ 6 In. (an.)	DRILLING LOG
3.0		Fill: wood, gravel, sand, @ 2 to 4 in: wood. @ 2 ft: wood, approximat								1100; Commence drilling.
-2.0 <i>-</i> -7.0-		@ 4 ft: moist sand, grave	l fill, stained black.							
-7.0-		@ 8 ft: wet.					\$ P			
-7.0		@ 10 to 12 ft: coal tar an	d heavy stained soil.	-						
	12.5 14.0	SILTY CLAY: gray, plastic						7 2 2 1	٥	1145: Break for lunch @ 12 ft. Silty clay at split spoon tip.
-12.0-]	Boring terminated at 14 ft			3 4					1350: Terminate drilling and set well.
								• •		
-17.0-			er earl					2		
-22.0-						<u>.</u>				
									1	
-27.0-										
	,									
-32.0-										
,										
-37.0	1	L_,					_Ļ			

TEST BORING RECORD

			TEST BORING			000	110	PAGE 1 OF		
		ME: Quanta Resources					BORING ID: MW-105 GROUND ELEV.: 5.03			
LOCAT			N:718404.80 E: RIG: Canterra CT-25		<u>-</u>	DRILLER: M. Kurzynowski				
		AMETER: Hollow Ster		<u> </u>	-	LOG				
		ED- 18 June 99	COMPLETED-	18 June 9	9			D BY: E. Triplett		
ELEVATION (FEET)	DEPTH (FEET)		IFTION	W	ELL SRAM		s/ Rec . (in.)	DRILLING LOG		
2,5		FILL: brown sand, grayel, coal tar pitch.				9-28 22-2	6 10	0810: cammence drilling		
		@ 0 to 3 ft; brown sand a cinders, dry.@ 3 ft; wood layer.	and gravel with black			42- 100/	8	@ 3 ft: spoon refusal on wood.		
-2.5- -7.5-	·	@ 4 to 6 ft: black cinders tar, coal tar odor, dry.	, same wood, slight			11-2 12-4	5- 11	0835: calect 99169-01 @ 5 ft.		
		@ 6 to 8 ft: sandy, black	staining, wood, wet.		=	7-6 7-8	6			
	· :	@ 8 ft: fluid tar.				9-7 3-2	+	@ hole PID = 3.5 ppm @ BZ PID = 0.2 ppm		
-7.5-	-	@ 9 to 10 ft; wood, sand tar odor, wat. @ 10 to 12 ft; coarse cin				1-0	┨-			
		wet, @ 12 to 14 ft: very hard	coal tar pitch.			10-4	6-1.3			
						6-6	-	0900: @ BZ PID = 0.0 ppm hard sticky pitch in spoon tip.		
-12.5	-	@ 16 ft: Hard sticky coal	tar pitch.			0.0	1	wet cinder sluff in spoon.		
	18.0					.0-1				
	-	CLAYEY SILT; gray, fairly	γ plastic.		3	wo	R 24	@ 18 ft: clayey silt in spoon tip. 0930: collect 99169-02 @ 19-20 Terminate drilling and set well.		
-17.5	20.0	Boring terminated at 20 f	t					1020: complete well. 4 50-lbs bags #1 WG FilterSil san 55-gal grout (Baroid bentonite powder 1.5 lbs/gal)		
-		a sata ang pagabatan								
-22.5-	-	244.3			ı					
			i garay sa jira							
-27.5~	-									
		•								
			, **							
-32.5-	-									
-37.5										

PAGE 1 OF 1

TEST BORING RECORD

000 :==		15.0	TEST BOR			10000	-	PAGE 1 OF
		ME: Quanta Resources		GL052		BORIN		
LOCATI DRILLIN			N:718195.96	E:633436	ง.บช			ELEV.:7.17
			RIG: Canterra CT-			DRILL		
		IAMETER: Hollow Ster			- 00	LOGG		
ELEVATION	DEPTH	ED- 21 June 99	COMPLETED-	22 Jur	MET I	CHEC	_	
(FEET)	(FEET)		RIPTION	SYMBOL		Blows/ 6 in.	(iU)	
7.4		FILL: sand and gravel, br pieces, slight staining, ge	own to tan, red brick nerally no odor.			16-26- 31-18	8	1325: Commence drilling.
						10-15- 27-13	6	
2.4-						15-19- 26-28	7	
						5-8- 5-7	7	
							Ľ	
-2.6-	-	@ 9 to 18 ft: dark gray is slight marsh mud odor.	ilt mixed with cinders,			13-15- 7-9	12	1410: Collect 99172-03 @ 9-10
					\equiv	3-1- 2-1	4	
						2-2- 2-1	8	
-7.6-	-					4-1- 2-1	6	1440: Callect 99172-04 @ 14-1
						3-2- 2-3	0	. , ,
	18.0	CLAYEY SILT: gray, trace coal tar odor decreasing	e dark staining, slight with depth.			1-3- 2-2	10	1450: Collect 99172-05 @ 18-1
-12.6-	, - -			697,997,997,997,997,997,997,997,997,997,		WOH-	18	
		4 S				1-0-	20	
	24.0	Boring terminated at 24 f				1-0		1515: Collect 99172-06 @ 23-2 1515: Stop drilling for day. 22 June 99, 0700: Start setting
-17.6-	-		•					well. 3.5 50-lbs bags #1 WG FilterSil sand. 50-gal grout (1 bag Baroid bentonite powder).
						1		0830: Complete well.
-22.6-								
-27.6-								
-32.6	<u> </u>	<u> </u>	·		1		1_	l

PROJEC	CT NAM	ME: Quanta Resources	PROJECT NO.:		GL052		BORI	NG	ID: MW-107
LOCAT			N:718371.10		32980	.54			ELEV.:6.85
DRILLIN			RIG: Canterra CT				DRIL		
		IAMETER: Hollow Ster					LOG		
		ED- 23 June 99	COMPLETED-		<u>23 Jun</u>			_	D BY: E, Triplett
(FEET)	(PEET)		RIPTION		SYMBOL	DIAGRAM	Blown 6 in	i/ Rec (in.)	
7,1		FILL: sand, gravel, brick a fragments, brown.	ind concrete				19-21 70-4	12	1035: Commence drilling.
							11-11		
	-					=		┨	
2,1-		@ 5ft: moist.					11-16	3	
		@ 6 ft: wet and slight da	rk staining,						
2.1 - -2.9 -				٠			200/3	1- 12	1130: Auger refusal @ 8 ft. Off-set 6' south drill to 1.0'.
-2.9~	10.0	SAND AND SILTY SAND silty sand, gray, some bis	: fine, interbedded laye	ers of			6-8- 8-9	1,	
		tar odor. @ 11 ft: 1-in thick layer					-	╀	
·		@ 13 to 14 ft; fine sand coal tar odor.	•	d.			8-7- 10-1	3 24	1150: Collect 99174-02 @ 13-14 @ sample PID = 0 ppm.
-7.9-	:	eri garin kanalisanya					5-7- 9-11		
		@ 17.5 to 18 ft: silty sar	nd no staining				11-9 16-1	24	
	-	@ 18 to 19.5 ft: fine san slight coal tar odor.					3-4- 5-7	18	12.5: collect 99174-03 @ 17.5-1
-12.9-	-	@ 19.5 to 20 ft: silty sar @ 20 to 21.3 ft: fine san	=					+	@ sample P(D = 0 ppm.
·	-	@ 21.3 to 22 ft: silty sar				9-13 16-2			
	23.0	@ 22 ft: slight sheen. SILT: gray to brown, trace fine sand.					15-19 23-2		1235: collect 99174-04 @
-17.9-	24.0	Boring terminated at 24 f	t						23-23.5'. Slight sweet odor. 1230: Start setting well. 3 50-lbs bags #1 WG FilterSil sand. 20-gal grout (0.3 bag Baroid bentonite powder).
	-								
-22.9									
			· · ·						
-27.9						·			
	-	·	. 4	•					
-32.9	1								<u> </u>

BORING ID: MW-108 PROJECT NAME: Quanta Resources PROJECT NO.: **GL0520 LOCATION: MW-108** N:718580.35 E:632735.04 **GROUND ELEV.:7.17** Diamond Drilling DRILLING CO.: RIG: Canterra CT-250 DRILLER: M. Kurzynowski METHOD & DIAMETER: Hollow Stem Auger 4.25 in I.D. LOGGED BY: J. Brandes DATE: STARTED- 21 June 99 COMPLETED-21 June 99 **CHECKED BY:** E. Triplett ELEVATION (FEET) DEPTH (FEET) WELL DIAGRAM Blows/ 6 in. SYMBOL DRALING LOG DESCRIPTION 7.7 **ASPHALT** 0830; Commence drilling. 0.3 FILL: sand, gravel, silt, brown to tan. 9-14-100/5* @ 0.3 to 1 ft: sand and gravel ballast. @ 1 ft: sand, silt, gravel, brown. @ 2.5 ft: Spoon refusal. 0840; Collect 99172-01 @ 2-2.51 @ 4 ft: diabase cobble. 11-15-19-16 2.7 23-28-46-38 @ 7 to 9 ft: some black staining, asphalt like @ 8 ft: Hard drilling. 23-27-100/1° @ 9 ft: Spoon refusal. -2.3 10.5 CLAY: gray meadow mat, aboundant root 0920: Collect 99172-02 @ 11-125 mat, plastic. WOR WOH-WOH-3-1 -7.3 @ 15 to 17 ft: Push shelby tube. Shelb WOH 19.0 1030: Start setting well. 2.5 50-lbs bags #1 WG Terminate boring at 19 ft. -12.3 FilterSil sand. 20-gal grout (1 50-lbs bag Baroid bentonite powder). -17.3 -22.3--27.3 32.3

		ME: Quanta Resources			3L052			ORIN		
LOCAT			N:718036.53		33336	.96				ELEV.:4.60
DRILLIN		: Diamond Drilling AMETER: HSA 4.25 in	RIG: Canterra CT-					RILLI		
		ED- 22 June 99	COMPLETED-		24 Jun	A 99				D BY: E. Triplett
ELEVATION (FEET)		DESCR			SYMBOL	WELL DIAGRAM		Blows/ 6 in.	Rec.	
4.8		Fill: sand, gravel, diabase fine, brown, cinders.	cobbles and boulders,					5-9- 21-32	16	0855: Commence drilling.
	•							19-27- 100/6*	4	
-0.2-	-									@ 3.5 ft: Spoon refusal. @ 4 ft: Hard drilling.
-0.2 <i>-</i> -5.2		@ 6 ft: slight black staining hydrocarbon odor.	ng and petroleum			=		2-4- 12-20	8	@ sample PID = 0 ppm.
								36- 100/3*	.6	
-5.2-	_							59-63- 74- 100/4"	12	@ 9 ft; Hard drilling.
		@ 11 to 13 ft: cinders.		,•.				7-8- 5-9	8	
-10.2-		@ 14 to 16 ft: wood chip	s, cinders, sand.					3-8-	, 1	
-1 U. 4-		@ 16 to 18 ft: cinders, sl	nale, and sandstone					32-63-	6	@ 15 ft: Very hard drilling. Hole at angle. 1100, @ 16 ft: Pull augers, lead auger broke off in hole.
	18.0	CLAYEY SILT: gray, some trace coal tar odor.	e small rock fragments,	•			1.	17-8 4-3- 2-2	2	Attempt to retrieve auger. 1120: Boulders cave into hole over auger, abandon hole. Stop
-15.2-	_							WOH- WOH- 1-2	6	drilling for day. 23 June 99, 0705: Off-set 5' west commence HSA drilling to 3'. Set up for wash rotary. Pump water from
	22.0	Terminate Boring at 22 ft	• .	-						open hole. 0740: Continue drilling to 18 ft and start SPS. 0855: Collect 99174-01 @ 20-21
-20.2-	_									0900: Start setting well. 4 50-lbs bags #1 WG FilterSil sand. Add 95-gal grout-level doesn't rise. Add 1 50-lb bag dry
	-	·	٠.							bentonite powder. 24 June 99: complete grouting well and initial hole with betonite chips.
-25.2~	_		· ·							
	-									
				٠.						
-30,2]· -									
										·
-35.2										

		ME: Quanta Resources W-110	PROJECT NO.: N:719273.03		33109		BORI		ID: MW-110 ELEV.:11.48
RILLIN			RIG: Canterra CT		33103		DRILL		
		IAMETER: Mud Rotary		-250			LOGG		
		ED- 24 June 99	COMPLETED-		24 Jun	- 00			
EVATION (FEET)	DEPTH (FEET)		RIPTION	_	SYMBOL	WELL DIAGRAM	Blows 6 in.		
1					m	// V//		-	0855: Commence drilling.
9.2		FILL: boulders, sand, grav debris,	vei, wood, concrete,					Ì	Drill to 9',
		. 400.101						İ	
	1		•				.	1	
								1	
	J							1	
.]		•	•					1	
4.2	7	•						1	
	4	•		** .				1	
1			• •						<u>k</u> e
. [
ì					<i>\////</i>				
· ·					<i>\////</i>			╂	
					<i>\////</i>	₩ =₩	4-6- 9-5		
-0.8	7				<i>\////</i>		9.6	10	
•	-	@ 9 to 13 ft; cinders, sa	nd gravel					+-	
·	•	CAMINITAL CHINDS OF	THE MENT OF STREET				6-8- 5-5	12	0045.0.0.0.00477.0.0
1	.				<i>\////</i>				0915: Collect 99175-01 @ 12-1
1	1	e e e e e e e e e e e e e e e e e e e			<i>\////</i>			T	
•	-	@ 14 ft; wood, creasate	odor.				5-7- 6-4	10	·
-5.8-	_	C. 14 It's Mond' changers	www.	·	<i>\\\\\\</i>			1	
٠.٠		,			<i>\////</i>		10-5	_	Wood chunks keep clogging
1	-	@ 16 ft: some black stai	ning and coal tar odor.	1	<i>\////</i>	 	3-6	6	intake screen.
	-				<i>\////</i>	 		+	
į	18.0	<u> </u>				I∥≡I∭	2-3- 4-4	8	
		SAND: fine, brown-green				I∥≡I∭		1	
l	_	5.7 5				<u> </u>		Т	
-10.8	-					 	6-8- 25-31	12	0945: Collect 99175-02 @ 20-2
- 1]		1-	1
		@ 21 to 22.5 ft: some si	ilt.			 	8-10		
	22.5	04401/045				=	13-1	ا''	
		SANDY SILT: fine to coa small angular sandstone	rse, brown-green, trac	е] <u> </u>		1	
		aitiaii tiithriai gaudatõüs	Ri daci+			13] <u>=</u> [3	31-43 52-60	112	1005, 0-11, 1, 00175, 00 0 01
15.0	25.0	<u> </u>			*****	14=1	"-"	L	1005: Collect 99175-03 @ 24-11000: Start setting well.
-15.8-	25.0-	Terminate boring at 25 ft	t.				11	1	3 50-lbs bags #1 WG FilterSil
								1	sand. 50-gal grout.
					1				1
			:		1				
	1	, ·			1		1	j	·
	٠ .	·			1			1	
-20.8	-					1		1	
İ	ļ [']				1	1		1	
		{			1		11	1	
						1	1 1	1	
1					1				
	<u>'</u>		•		1 .	1		1	1.
.]	ľ -				1	1]]	1	
-25.8-			•		ļ	1		-	
-25.8-		1			1	Į.		1	
-25.8		,				1	1 1	1	£
-25.8~		,							
-25.8		,		•					
-25.8~				•					

		ME: Quanta Resources		GL0520			ORIN	_	
	ION: H			633671	.764			_	ELEV.:-1.7
	IG CO.		RIG:			_	RILL	_	
		IAMETER: 2 1/4" Hand ED- 19 Nov 98	COMPLETED-	19 Nov	98	_	OGG		BY: C. Lamphier D BY: E. Triplett
EVATION	DEPTH			13 1404	WELL	17	Blows/	_	J DI. E. Implett
(FEET)	(FEET)		dFTION .	SYMBOL	DIAGRAM		6 kn.		DRILLING LOG
-1.7		SILT							Commence boring, water depth = 3 ft, 20 ft off shore.
		•		******					disput — a te, 20 te dit attere.
	. 1								
	1			- A					·

-6.7-	-	•							Auger to 4.8 ft, no recovery, 1030: collect 98323-01 @ 8.5
-	1								to 9 ft. 1115; staff gauge reads 4,5 ft.
	. 1			*****					Depth of water at casing = 1.28 10.5 ft, sediment getting firm
			· · · · · · · · · · · · · · · · · · ·						@ 10.5 ft, sediment getting firm harder augering.
		@ 8.5 to 9 ft: soft black : sheen.	sediment with aily						1130: Collect 98323-02 at 11.5
-11.7-	-	W1100112	-						to 12 ft, similar in appearance
		@ 11.5 to 12 ft: dark to	black sediment with oily						to last sample. When augering, seemed to bring up oily sheen;
	12,0	sheen, very strong coal to Boring terminated @ 12 f							sheen bubbling up. Terminate boring and filled hole
	-	sporting reithingsed @ 15 i							bentonite. Pulled out 5 ft of casi
				1.		. '	111:		
-16.7-	_								
,		5							
	<u> </u>								•
				1 1					
			•						•
-21.7-									
					· · · · · ·				
	-				,				
	-	•			·				
	-								
-26.7-	-								
	-								
] -								
-31.7~	-		•						
• •		•	•		·				
		,					•		
		·					1		
]				·				·
	1				·				
-36.7-	1 -		• *		ŀ				
				.	· .				
	.				,		1		
			the second second]				
			:				1		
-41.7	1	<u> </u>		1	1	i	1	1	

PROJEC	T NAM	AE: Quanta Resources		GL0520		BORING	ID:	VC-01	1 01
		lgewater, NJ	N:718652	E:633807				7.:-1.47	
DRILLIN			RIG: Barge Mount	ted		DRILLER	} :	K. Morrison	-
METHO	D & D	AMETER: Vibracore 2				LOGGE	BY:	K. Wills	
DATE:	CORED	- 16 June 99	DATE: OPENED-	16 Jun	e 99	CHECK	D BY:	J. Brandes	
LEVATION (FEET)	DEPTH (FEET)		RIPTION	SYMBÓL		Geo Tech.		DRILLING LOG	
-1.5		© 2 ft: product sheen, so 2.1-3 ft: visually free @ 3-3.9 ft: slight sheen.					Geote	ch, sample from 0 to	2 ft.
-6.5-		@ 3-3.9 ft: slight sheen.			-				
	7.0	@ 7 ft: some coal tar pro					Collec	t sheen test sample	at 7 ft
		Core length: 3.9 ft. Approx. 0.5 ft of core fe	•					- choose cook agriculta	, IE
-11.6-	- 4		•						
			· · · · · · · · · · · · · · · · · · ·				·	.	
-16.5-	-							• • • • • • • • • • • • • • • • • • • •	
-21.5-	-	· ·						·	
			e e						
-26.5-	-	·							
			•						
-31.5-	-								
					·				
-36.5-	_							•	
-41.5									

	000 15	× 1144	15. 6	TEST BORIN		1505010	PAGE 1 OF 1
			AE: Quanta Resources		GL0520	BORING	
	DRILLIN		Igewater, NJ		:633714	DRILLER	D ELEV.:-0.79
			: Athena Tech. AMETER: Vibracore 2	RIG: Barge Mounted	· · · · · · · · · · · · · · · · · · ·	LOGGE	
	DATE:			DATE: OPENED-	16 June 99	CHECKE	
,	ELEVATION	DEPTH	10 Julie 33	DATE. OF ENED-	10 Julie 33	Good	D B1. 3. Brandes
_	(FEET)	(FEET)		UPTION	SYMBOL	Tech.	DRILLING LOG
PM-1 7-16-99	-0.8	-	CLAYEY SILT, black stain core with small pockets/le and coal tar odor. @ 2-3 ft: abundant lense: product.	enses of black product			Geotech. sample from 0 to 2 ft.
WINDIANTAIBORLOGSIVC-02.PL3:KPM-1_7-16-99	-5,8		@ 3.8-4.4 ft: abundant le product.	nses of flowable black			
NAUDUM	-10.8-	-					Geotech. sample from 8 to 10 ft.
	-15.8-		 12.2 ft: flowable black 13.6 ft: flowable black 14.4 ft: approximately layer. 14.75 ft: approximatel layer. 14.75-16 ft: product sproduct upon compression 	product. 1/2 in. thick cinder y 1/2 in. thick cinder aturated zone, flowable			
)	-20.8-	18.3 Î	Penetration depth: 18.3 f Care length: 16.1 ft.	:·			Geotech. sample from 16 to 18 ft. Chemical sample 99167-01 from 18 to 18.3 ft.
	-25.8-	- - -					
	-30.8-	- -					
	-35.8-	-		÷			
-	-40.8	-		·			

	PRO IFO	TNA	AE: Quanta Resources		GL0520	BORING	FAGE 1 OF 1
			Igewater, NJ		E:633681		D ELEV.:-0.98
			: Athena Tech.	RIG: Barge Mounte		DRILLE	
			AMETER: Vibracore 2			LOGGE	
	DATE:			DATE: OPENED-	17 June 99		
	ELEVATION (FEET)	DEPTH (FEET)		MPTION	SYMBOL	Geo Tech.	DRILLING LOG
86-81-7 L-MAX EIG EG-CV/800 ISOSIATIVATION	-1.0 -6.0-	-	CLAYEY SILT, black stair core with pockets/lenses coal tar odor. @ 2.5-7.5 ft: heavy black length of zone, with pock flowable black product, coal targets.	of black product and staining throughout ets/lenses of free	THE CONTROL OF THE CO		Geotech. sample from 0 to 2.5 ft.
WANTANBOR ORS	11.0-				CARROLL CONTROLL ONTROL CONTROL		
	-11.0-	-	@ 10.5-15 ft: heavy blac length of zone, with pock flowable product, coal tar	ets/lenses of black free	The second secon		Geotech, sample from 7.5 to 10.5 ft.
	-16.0~	18.3	@ 18 ft: heavy black stai		The American Service of the Control		Geotech. sample from 15 to 18 ft.
,	-21.0~	_	Penetration depth: 18.3 f Core length: 14.2 ft.	t.			Collect sheen test sample at 18 ft.
	-26,0-	-					
-	-31.0-						
	-36.0-						
)	-41.0	-		·			

ſ	PROJEC	CT NAM	ME: Quanta Resources	PROJECT NO.:	GL0520	BORING	ID: VC-04
			lgewater, NJ	N:718607	E:633847		D ELEV.:-1.89
	DRILLIN			RIG: Barge Moun	ted	DRILLER	
			AMETER: Vibracore 2		······································	LOGGEE	
-	DATE:	CORED	- 16 June 99	DATE: OPENED-	17 June 99	CHECKE	D BY: J. Brandes
	ELEVATION (FEET)	DEPTH (FEET)	DESC	RIPTION	SYMBOL	Geo Tech.	DRILLING LOG
NINGUANTANBORLOGSIVC-04, PL3 KPM-1 7-16-98	-1.9 -6.9-		CLAYEY SILT, heavy blackength of core with small product, coal tar odor.	ck staining throughout pockets/lenses of blac	K AND AND AND AND AND AND AND AND AND AND		Geotech. sample from 0-2.25 ft.
OUANTAIBORLOGSIVO		-	(
Nah	-11.9-		@ 10-10.5 ft: visually clotar odor. @ 10.5-12 ft: heavy blac pockets of black product @ 12-15 ft: mostly visua black product.	k staining with small, coal tar odor.	AND AND AND AND AND AND AND AND AND AND		Geotech. sample from 7.6 to 10 ft.
•	-16.9- -21.9-		@ 15-16 ft: increased bl. pockets/lenses of black p @ 16-17.4 ft: heavy blac with small pockets of bla @ 17.4 ft: aproximately black product, slightly gri	oroduct. k staining throughout, ck product. 1/2 in. thick layer of			
	_	20.3	Penetration depth: 20.25 Core length: 17.6 ft.	ft.			Geotech. sample from 17.6 to 20 ft.
	-26.9-				-		
,	-31.9	-					
	-36.9						
	-41.9]					
, 1	<u> </u>		·	···			·

VC-05 PROJECT NAME: Quanta Resources PROJECT NO.: **GL0520 BORING ID:** LOCATION: Edgewater, NJ E:633793 **GROUND ELEV.:-1.61** N:718567 DRILLING CO.: Athena Tech. RIG: Barge Mounted DRILLER: K. Morrison METHOD & DIAMETER: Vibracore 2" Aluminum Core LOGGED BY: K. Wills DATE: CORED-16 June 99 DATE: OPENED-17 June 99 CHECKED BY: J. Brandes ELEVATION (FEET) DEPTH (FEET) Geo Tech SYMBOL DESCRIPTION DRILLING LOG -1.6 CLAYEY SILT, heavy black staining throughout length of core with small pockets/lenses of flowable black product, coal tar odor. Geotech. sample from 0 to 2 ft. -6.6 -11.6-@ 12.1-14 ft: slightly less black staining, Geotech, sample from 10 to slight sheen, slight coal tar odor. 12.1 ft. @ 14-20.6 ft: small pockets of product. -16.6: @ 15.5 ft: aproximately 1/4-1/2 in, pocket of free black product, coal tar odor. @ 17 ft: aproximately 1/4-1/2 in. pocket of free black product, coal tar odor. -21.6 Geotech. sample from 17 to 20.6 20 ft. Penetration depth: 20.6 ft. Chemical sample 99168-02 at Core length: 19.4 ft. 20.3 ft. Sample split for sheen testing. -26.6 -31.6 -36.6

PRO IFO	T NA	ME: Quanta Resources		GL0520	<u>'</u>	BORING	ID: VC-06
			N:718500	E:633746			ELEV.:-1.46
DRILLIN	IG CO.	Athena Tech.	RIG: Barge Mount			DRILLER	: K. Morrison
		AMETER: Vibracore 2				LOGGED	
DATE:		- 16 June 99	DATE: OPENED-	17 June	99	CHECKE	D BY: J. Brandes
(FEET)	DEPTH (FEET)	DESCR		SYMBOL		Geo Tech.	DRILLING LOG
-1.5		CLAYEY SILT, slight black length of core with some sheen (isolated), visually length cores.	pockets of very light				Geotech. sample from 0 to 2.2 ft
-6.5-							Chemical sample 99168-03 at 4.5 ft.
	4		•	TAVAGUA TAVAGUA			
-11.5-		@ 9.8-14.8 ft: heavy black length of zone, with pocker black product.	k staining throughout ets of free flowable		•		Geotech. sample from 7.6 to 9.8
-16.5	-	0.176.14.1.1.1.1.1.1.1.1.1.1.1					
-21.5-	17.5	@ 17 ft: black stained silt Penetration depth: 17.4 ft Core length: 15.75 ft.		**************************************			Geotech. sample from 14.8 to 17 ft. Chemical sample 99168-01 at 17 ft. Sample split for sheen testing.
-26.5			•:				
-31.5-	-						
-36.5-	-						
-41.5							

TEST BORING RECORD PAGE 1 OF 1								
PROJECT NAME: Quanta Resources PROJECT NO.: GL0520						BORING ID: VC-07		
LOCATION: Edgewater, NJ N:719318 E:634314 DRILLING CO.: Athena Tech. RIG: Barge Mounted						GROUND ELEV.:-3.82 DRILLER: K. Morrison		
METHOD & DIAMETER: Vibracore 2" Aluminum Core								
DATE:			LOGGED					
ELEVATION (FEET)		DESCRIPTION	E OPENED-	17 June 99	Geo Tech	DRILLING LOG		
		CLAYEY SILT, dark gray, some	visible staining	24/24/24/2				
3.0		some petroleum hydrocarbon odor.				i i		
	1 1	@ 2-3.5 ft: no visible staining, n	o odor					
]	& 2-5.5 It. NO VISIBLE Statuting, In	o odor.	******		Geotech. sample from 0 to 2.2 ft.		
4	i j	@ 3.5 ft: slight black staining, s	light petroleum	**************************************		l ·		
	1	hydrocarbon odor.	giic poulouii			(
-8.8	1 1					i		
	1 1		•	**************************************				
	1	•						
3.8 8.8 8.8 9.3 1.3] {					. ,		
d	[]	•	,			l .		
-13.8]]							
7	1 1	@ 10-17.5 ft: black staining, pe hydrocarbon odor.	troleum	******		Geotech. sample from 8.5		
] .	1	Hydrocarbott buot.				10.6 ft.		
	1							
	1					i		
		· •		720000 200000				
-18.8	1 - 1		•	(140 140 140 1 (140 140 140 140 140 140 140 140 140 140				
			•					
						·		
	1 1			7.447.447.447 				
	1	@ 18 ft: black staining, no shee	n, petroleum	12 AND 1444 (444) 12 AND 1444 (444)		Collect sheen test sample at		
1] 1	hydrocarbon odor.		AND AND AND AND AND AND AND AND AND AND		18 ft.		
-23.8-	1 1					·		
	21.2	0				Geotech, sample from 18.6		
		Penetration depth: 21.2 ft. Core length: 19.1 ft.				to 20.9 ft.		
		•						
]]					·		
20.0]							
-28.8-	1 1		•					
[.]	[1							
	j 1							
1	1 1					·		
]		:						
-33.8]]		•	1 1		·		
33.6	1 1	•	٠			1		
]	1							
	1	·"				·		
-38.8	1 1	• •						
	[]			1 1				
]]							
	- · 1							
]] 1							
	1							
-43.8						<u> </u>		

REMARKS:

			ME: Quanta Resources	BORING			
			gewater, NJ		:634478	DRILLER) ELEV.:-2.89
		RILLING CO.: Athena Tech. RIG: Barge Mounted ETHOD & DIAMETER: Vibracore 2" Aluminum Core					
	DATE:			DATE: OPENED-	17 June 99	LOGGED	
-	ELEVATION (FEET)	DEPTH (FEET)		RIPTION	SYMBOL	Gea Tech.	DRILLING LOG
C-08.PL3 KPM-1 7-16-99	-2.9 -7.9-	2.9	@ 3.5 ft: GYPSUM FINES				Geotech. sample from 0.08 ft. to 3.08 ft.
N:10UANTA\BOBLOGS\VC-08.PL3 KPM1				faint petroleum hydrocart	oon odor.	A A A A A A A A A A A A A A A A A A A	
Ž	-12.9-		@ 10-15 ft: gray, visually petroleum hydrocarbon o	/ clean, very faint dor,	AN AN		Geotech. sample from 8.3 ft. to 10.4 ft.
	-17.9-	17.5	@ 17.5 ft: no sheen visit	ole, slight petroleum	THE STATE OF THE S		Geotech. sample from 15.5 ft. to 17 ft.
	-22.9-		hydrocarbon odor. Penetration depth: 17.5 f Core length: 16.75 ft.				Collect sheen test sample at 17.5 ft.
•	-27.9-	-					
	-32.9	-					
-	-37.9-						
) ·	-42.9						

REMARKS:

APPENDIX E CPT AND ROSTTM LOGS

FUGRO GEOSCIENCES, INC.

6105 Rookin Houston, TX 77074 Phone: 713-778-5580

Fax: :713-778-5501

December 11, 1998

Report Number: 0304-1068

GeoSyntec Consultants 1100 Lake Hearn Drive Atlanta, Georgia 30342

Attn.: Mr. John Brandes

DATA REPORT

CONE PENETRATION AND

RAPID OPTICAL SCREENING TOOL TESTING

OFFSHORE INVESTIGATION

EDGEWATER, NEW JERSEY

Dear Mr. Brandes:

Fugro Geosciences (Fugro) is pleased to present this data report for Cone Penetration (CPT) and Rapid Optical Screening Tool (ROST™) testing at the above-referenced site. CPT/ROST™ provided continuous characterization of stratigraphy and petroleum hydrocarbon distribution at the testing locations. A description of the CPT and ROST™ technologies and a discussion of general ROST™ data interpretation follows. CPT and ROST™ logs are included as attachments.

Cone Penetration Testing

CPT was performed simultaneously with each ROSTTM sounding and yielded real-time stratigraphic data. CPT is a proven method for rapidly evaluating the physical characteristics of unconsolidated soils. It is based on the resistance to penetration of an electronically-instrumented cone which is continuously advanced into the subsurface. In accordance with ASTM Standard D5778-95, the cone was advanced at a rate of two centimeters per second with the driving force provided by hydraulic rams.

The CPT cone used at this site had an apex angle of 60 degrees with a base area of 15 square centimeters (cm²), and friction sleeve with a surface area of 200 cm². The standard geotechnical sensors within the cone measure tip resistance and sleeve friction in tons per square foot (TSF). The combined data from the tip resistance and sleeve friction form the basis of the soil classification (e.g., sand, silt, clay, etc.).

Soil stratigraphy was identified using Campanella and Robertson's Simplified Soil Behavior Chart. Please note that because of the empirical nature of the soil behavior chart, the soil identification should be verified locally.

GeoSyntec Consultants
Mr. John Brandes
Page - 2 - Report No.: 0304-1068

ROST™ Testing

Fugro Geosciences' ROSTTM Laser-Induced Fluorescence system was used for this investigation to screen soils for petroleum hydrocarbon materials containing aromatic hydrocarbon constituents. The system consists of a tunable laser mounted in the CPT truck that is connected to a down-hole sensor. The down-hole sensor consists of a small diameter sapphire window mounted flush with the side of the cone penetrometer probe.

The laser and associated equipment transmit 50 pulses of light per second to the sensor through a fiber optic cable. The wavelength of the pulsed excitation light is tunable and can be set to wavelengths of 266 nanometers (nm) or to wavelengths between 280 and 300 nm. An excitation wavelength of 290 nm was used for each test during this project.

The laser light passes through the sapphire window and is absorbed by aromatic hydrocarbon molecules in contact with the window, as the probe is advanced. This addition of energy (photons) to the aromatic hydrocarbons causes them to fluoresce. A portion of the fluorescence emitted from any encountered aromatic constituents is returned through the sapphire window and conveyed by a second fiber optic cable to a detection system within the CPT rig. The emission data resulting from the pulsed laser light is averaged into one reading per one second interval (approximately one reading per 2 cm vertical interval) and is recorded continuously. ROST™ may be operated in single or multi-wavelength mode, depending on project objectives. For this project, ROST™ was operated in multi-wavelength mode (MWL).

Multi-Wavelength Mode (MWL). In MVVL mode, the emitted fluorescence is measured simultaneously at four monitoring wavelengths (340, 390, 440, and 490 nm). The four monitoring wavelengths cover the range of light produced by light fuels through heavy contaminants such as coal tar and creosote and enhance detection of widely ranging product types. The emission data is reported continuously as a total of the fluorescence intensity recorded at each of the four wavelengths. The total fluorescence intensity data is presented in real-time on a computer monitor as a graph of fluorescence intensity versus depth (FVD).

The relative percentage of fluorescence measured at each of the monitoring wavelengths (340, 390, 440, and 490 nm) is plotted continuously on the ROST[™] logs as four continuous "color bands". The width of each color band represents the relative percentage of fluorescence emitted by the contaminant at each of the monitoring wavelengths (340, 390, 440, and 490 nm). For general interpretation purposes, lighter aromatic hydrocarbon molecules will emit fluorescence at shorter wavelengths and heavier, longer chained hydrocarbons will emit fluorescence at longer wavelengths.

By comparing the relative percentage ratios generated by known product samples with field data, interpretations of product type can often be made. Utility of product identification is often dependent on the degree of similarity between the reference product and the in-situ product composition.

Reference Solution. The fluorescence intensity of a reference solution placed on the sapphire window was measured immediately prior to conducting each test. This reference solution measurement serves two purposes. First, as a quality control check, the solution is used to ensure that the performance of the system is within specifications. Second, it allows for normalization of the data from different test locations for variation in laser power, operating conditions, and monitored emission wavelength. The reference solution used for this project was the standard M1 reference, which is a proprietary PHC containing solution. M1 provides consistent fluorescence response across the portion of the spectrum analyzed by ROST and therefore, allows the fluorescence data collected to be consistently normalized to intensities recorded as a percentage of M1.

GeoSyntec Consultants

Mr. John Brandes

Page - 3 - Report No.: 0304-1068

Tuero

LIMITATIONS OF ENVIRONMENTAL SUBSURFACE WORK

Fugro Geosciences' report is based upon our observations made during field work, the information provided to Fugro and the results of the ROST/CPT survey. Given the inherent limitation of environmental subsurface work, Fugro can not guarantee that the site is free of hazardous or potentially hazardous materials or conditions or that latent or undiscovered conditions will not become evident in the future. Fugro's report was prepared in accordance with our proposal and the General Conditions agreed to between Fugro and Client and no warranties, representations, or certifications are made.

Fugro Geosciences, Inc. appreciates the opportunity to be of service to your organization. Please do not hesitate to contact us if we can be of further assistance. We look forward to working with you in the future.

Sincerely,

FUGRO GEOSCIENCES, INC.

Andrew Taer

Operations Manager

AT/mw

ROST™ LOGS

			,			
						
ž .			OF TEST	***	OF TEST	e e
-		DEPTH		DEPTH		
		TO		TO		
٠		MUDLINE		MUDLINE	•	CASING
DATE	CPT	(FEET)	TIME	(FEET)	TIME	(FEET)
11/30/98	R-01	10.5				12.5
12/1/98	R-02	. 15.9	10:25	15.9	11:55	20
	R-03	10.9	12:20	10.75	12:40	12.5
	R-04	9.75	13:35	9.9	13:55	12.5
	R-05	9	16:45	9.2	17:10	12.5
	R-06	9.15	17:55	9.2	18:15	12.5
12/2/98	R-07	9.7	6:40	9.75	7:25	12.5
	R-08	9.8	7:50	9.5	8:15	12.5
	R-09	8.8	17:50	9.05	16:20	12.5
	R-10	8.8	19:30	8.75	19:55	12.5

CPT LOGS

Key To Soil Classification and Symbols

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (Major portion Retained on No. 200 Sieve)

includes (1) clean gravels and sand described as fine, medium or course, depending on distribution of grain sizes (2) silty or dayey gravels and sands and (3) fine grained low plasticity soils (PI < 10) such as sandy silts. Condition is rated according to relative density, as determined by lab tests or estimated from resistance to sampler penetration.

Descriptive Term	Penetration Resistance*	•		Relative Density
Loose	0 - 10			0 to 40%
Medium Dense	10 - 30		• '	40 to 70%
Dense	30 - 50			70 to 90%
Very Dense	Over 50			90 to 100%

^{*} Blows/Foot, 140# Hammer, 30" Drop

FINE GRAINED SOILS (Major Portion Passing No. 200 Sleve)

includes (1) inorganic and organic sitts and clays, (2) sandy, gravelly or sitty clays, and (3) clayey sitts. Consistency is rated according to shearing strength, as indicated by penetrometer readings or by unconfined compression tests for soils with PI > 10.

Descriptive	Cohesive Shear Strength		
Term_	Tons/Square Foot		
Very Soft	Less Than 0.125		
Soft	0.125 to 0.25		
Firm	0.25 to 0.50		
Stiff	0.50 to 1.00		
Very Stiff	1.00 to 2.00		
Hard	2.00 and Higher		

Note: Slickensided and fissured day may have lower unconfined compressive strengths than shown above because of planes of weakness or shrinkage cracks; consistency ratings of such soils are based on hand penetrometer readings.

TERMS CHARACTERIZING SOIL STRUCTURE

Ing

Parting:	paper thin in size	Flocculated:	pertaining to cohesive soils that exhibit a loose
Seam:	1/8° to 3" thick		knit or flakey structure
Layer:	greater than 3"	Slickensided:	having inclined planes of weakness that are slick and glossy in appearance.
Fissured:	containing shrinkage cracks, frequently filled with		sick and glossy in appearance.
•	fine sand or silt, usually more or less vertical	Degree of Slickensides	1 Development
Sensitive:	pertaining to cohesive soils that are subject to appreciable loss of strength when remolded	Slightly Slickensided:	slickensides present at intervals of 1' to
Interbedded:	composed of alternate layers of different soil		2', soil does not easily break along these plates

Laminated: composed of thin layers of varying color and Moderately Slickensided;

texture texture containing appreciable quantities of calcium Extremely Silckensided:

Calcareous: . containing appreciable quantities of calcium carbonate

Well Graded: having wide range in grain sizes and substantial amounts of all intermediate particle sizes

Poorty Graded: predominantly of one grain size, or having a range of sizes with some intermediate size miss-

Intensely Slickensided:

pieces 3" to 6" in size alickensides spaced at intervals of less than 4", continuous in all directions; soll breaks down along planes into nodules

slickensides spaced at intervals of 1" to

2', soil breaks easily along these planes

continuous and interconnected slicken-

sides spaced at intervals of 4° to 12'.

soil breaks along the slickensides into

1/4" to 2" in size.

6105 Rookin Houston, TX 77074 Phone: 713-778-5580

Fax : 713-778-5501

December 11, 1998 Report Number: 0304-1066

GeoSyntec Consultants 1100 Lake Hearn Drive Atlanta, Georgia 30342

Attn.: Mr. John Brandes

DATA REPORT

CONE PENETRATION AND

RAPID OPTICAL SCREENING TOOL TESTING
ONSHORE INVESTIGATION
EDGEWATER, NEW JERSEY

Dear Mr. Brandes:

Fugro Geosciences (Fugro) is pleased to present this data report for Cone Penetration (CPT) and Rapid Optical Screening Tool (ROST™) testing at the above-referenced site. CPT/ROST™ provided continuous characterization of stratigraphy and petroleum hydrocarbon distribution at the testing locations. A description of the CPT and ROST™ technologies and a discussion of general ROST™ data interpretation follows. CPT and ROST™ logs are included as attachments.

Cone Penetration Testing

CPT was performed simultaneously with each ROSTTM sounding and yielded real-time stratigraphic data. CPT is a proven method for rapidly evaluating the physical characteristics of unconsolidated soils. It is based on the resistance to penetration of an electronically-instrumented cone which is continuously advanced into the subsurface. In accordance with ASTM Standard D5778-95, the cone was advanced at a rate of two centimeters per second with the driving force provided by hydraulic rams.

The CPT cone used at this site had an apex angle of 60 degrees with a base area of 15 square centimeters (cm²), and friction sleeve with a surface area of 200 cm². The standard geotechnical sensors within the cone measure tip resistance and sleeve friction in tons per square foot (TSF). The combined data from the tip resistance and sleeve friction form the basis of the soil classification (e.g., sand, silt, clay, etc.). Please note that due to damage caused by penetration through rubble, some tests were performed with a standard cone penetrometer (measurement of tip and sleeve resistances), piezocone penetrometer (measurement of pore water pressure, tip and sleeve resistances) and supercone penetrometer (measurement of pore water pressure, conductivity, tip and sleeve resistances).

GeoSyntec Consultants
Mr. John Brandes
Page - 2 - Report No.: 0304-1066

Soil stratigraphy was identified using Campanella and Robertson's Simplified Soil Behavior Chart. Please note that because of the empirical nature of the soil behavior chart, the soil identification should be verified locally.

ROST™ Testing

Fugro Geosciences' ROSTTM Laser-Induced Fluorescence system was used for this investigation to screen soils for petroleum hydrocarbon materials containing aromatic hydrocarbon constituents. The system consists of a tunable laser mounted in the CPT truck that is connected to a down-hole sensor. The down-hole sensor consists of a small diameter sapphire window mounted flush with the side of the cone penetrometer probe.

The laser and associated equipment transmit 50 pulses of light per second to the sensor through a fiber optic cable. The wavelength of the pulsed excitation light is tunable and can be set to wavelengths of 266 nanometers (nm) or to wavelengths between 280 and 300 nm. An excitation wavelength of 290 nm was used for each test during this project.

The laser light passes through the sapphire window and is absorbed by aromatic hydrocarbon molecules in contact with the window, as the probe is advanced. This addition of energy (photons) to the aromatic hydrocarbons causes them to fluoresce. A portion of the fluorescence emitted from any encountered aromatic constituents is returned through the sapphire window and conveyed by a second fiber optic cable to a detection system within the CPT rig. The emission data resulting from the pulsed laser light is averaged into one reading per one second interval (approximately one reading per 2 cm vertical interval) and is recorded continuously. ROST™ may be operated in single or multi-wavelength mode, depending on project objectives. For this project, ROST™ was operated in multi-wavelength mode (MWL).

Multi-Wavelength Mode (MWL). In MWL mode, the emitted fluorescence is measured simultaneously at four monitoring wavelengths (340, 390, 440, and 490 nm). The four monitoring wavelengths cover the range of light produced by light fuels through heavy contaminants such as coal tar and creosote and enhance detection of widely ranging product types. The emission data is reported continuously as a total of the fluorescence intensity recorded at each of the four wavelengths. The total fluorescence intensity data is presented in real-time on a computer monitor as a graph of fluorescence intensity versus depth (FVD).

The relative percentage of fluorescence measured at each of the monitoring wavelengths (340, 390, 440, and 490 nm) is plotted continuously on the ROST™ logs as four continuous color bands. The width of each color band represents the relative percentage of fluorescence emitted by the contaminant at each of the monitoring wavelengths (340, 390, 440, and 490 nm). For general interpretation purposes, lighter aromatic hydrocarbon molecules will emit fluorescence at shorter wavelengths and heavier, longer chained hydrocarbons will emit fluorescence at longer wavelengths.

By comparing the relative percentage ratios generated by known product samples with field data, interpretations of product type can often be made. Utility of product identification is often dependent on the degree of similarity between the reference product and the in-situ product composition.

Reference Solution. The fluorescence intensity of a reference solution placed on the sapphire window was measured immediately prior to conducting each test. This reference solution measurement serves two purposes. First, as a quality control check, the solution is used to ensure that the performance of the system is within specifications. Second, it allows for normalization of the data from different test locations for variation in laser power, operating conditions, and monitored emission wavelength. The reference solution used for this project was the standard M1 reference, which is a proprietary PHC containing solution. M1 provides consistent fluorescence response across the portion of

GeoSyntec Consultants
Mr. John Brandes

Page - 3 - Report No.: 0304-1066

the spectrum analyzed by ROST and therefore, allows the fluorescence data collected to be consistently normalized to intensities recorded as a percentage of M1.

LIMITATIONS OF ENVIRONMENTAL SUBSURFACE WORK

Fugro Geosciences' report is based upon our observations made during field work, the information provided to Fugro and the results of the ROST/CPT survey. Given the inherent limitation of environmental subsurface work, Fugro can not guarantee that the site is free of hazardous or potentially hazardous materials or conditions or that latent or undiscovered conditions will not become evident in the future. Fugro's report was prepared in accordance with our proposal and the General Conditions agreed to between Fugro and Client and no warranties, representations, or certifications are made.

Fugro Geosciences, Inc. appreciates the opportunity to be of service to your organization. Please do not he sitate to contact us if we can be of further assistance. We look forward to working with you in the future.

Sincerely,

FUGRO GEOSCIENCES, INC.

Andrew Taer

Operations Manager

AT/mw

ROSTTM LOGS

CPT LOGS

Key To Soil Classification and Symbols

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (Major portion Retained on No. 200 Sieve)

includes (1) dean gravels and sand described as fine, medium or course, depending on distribution of grain sizes (2) silty or dayey gravels and sands and [3] fine grained low plasticity soils [PI < 10] such as sandy silts. Condition is rated according to relative density, as determined by lab tests or estimated from resistance to sampler penetration.

Descriptive Term	Penetration Resistance	•	Relative Density
Loose	0 - 10		0 to 40%
Medium Dense	10 - 30	•	40 to 70%
Dense	30 - 50		70 to 90%
Very Dense	Over 50		90 to 100%

^{*} Blows/Foot, 140# Hammer, 30" Drop

FINE GRAINED SOILS (Major Portion Passing No. 200 Sleve)

includes (1) inorganic and organic alits and days, (2) sandy, gravelly or sity clays, and (3) claysy alits. Consistency is rated according to shearing strength, as indicated by penetrometer readings or by unconfined compression tests for soits with Pl > 10.

Descriptive	Cohesive Shear Strength Tons/Square Foot	
<u>Term</u>		
Very Soft	Less Than 0.125	
Soft	0.125 to 0.25	
Firm	0.25 to 0.50	
Stiff	0.50 to 1.00	
Very Stiff	1.00 to 2.00	
Hard	2.00 and Higher	

Note: Slickensided and fissured clay may have lower unconfined compressive strengths than shown above because of planes of weakness or shinkage cracks; consistency ratings of such solls are based on hand penetrometer readings.

TERMS CHARACTERIZING SOIL STRUCTURE

Parting:	paper thin in size	Flocculated: .	pertaining to cohesive soils that exhibit a loose	
Seam:	1/8" to 3" thick	Am	knit or flakey structure having inclined planes of weakness that are slick and glossy in appearance.	
Layer:	greater than 3"			
Fissured:	containing shrinkage cracks, frequently filled with			
•	fine sand or silt, usually more or less vertical	Degree of Stickensided Development		
Sensitive:	pertaining to cohesive soils that are subject to		•	
	appreciable loss of strength when remolded	Slightly Slickensided:	slickensides present at intervals of 1' to	
Interbedded:	composed of atternate layers of different soil	•	2', soil does not easily break along	
	types	1	these plates	

Moderately Slickensided: Laminated:

composed of thin layers of varying color and

texture containing appreciable quantities of calcium Calcareous:

carbonate

Well Graded: having wide range in grain sizes and substantial amounts of all intermediate particle sizes

Poorty Graded: predominantly of one grain size, or having a range of sizes with some intermediate size missIntensely Slickensided:

Extremely Slickensided:

sides spaced at Intervals of 4° to 12'. soil breaks along the slickensides into pieces 3" to 6" in size slickensides spaced at intervals of less than 4°, continuous in all directions; soil

slickensides spaced at intervals of 1° to

2', soil breaks easily along these planes

continuous and interconnected sticken-

breaks down along planes into nodules 1/4" to 2" in size.

APPENDIX F TIDAL FLUCTUATION GRAPHS

Hudson River Tide Station

MW-07

MW-20

MW-31

APPENDIX G

ANALYTICAL DATA COMPUTER DISK